Acceso abierto

Heat stress in beef cattle: climate change and the global scenario – a review


Cite

Abhijith A., Sejian V., Ruban W., Krishnan G., Bagath M., Pragna P., Manjunathareddy G.B., Bhatta R. (2021). Summer season induced heat stress associated changes on meat production and quality characteristics, myostatin and HSP70 gene expression patterns in indigenous goat. Small Rumin. Res., 203: 106490. Search in Google Scholar

Adams R.A., Hurd B.H., Lenhart S., Leary N. (1998). Effects of global climate change on agriculture: an interpretative review. Clim. Res., 11: 19–30. Search in Google Scholar

AfDB, African Economic Outlook (2017). Entrepreneurship and Industrialization. Abidjan: African Development Bank. Search in Google Scholar

African Business (2019). Raising the steaks: Africa’s booming meat industry, https://african.business/2019/03/economy/raising-the-steaks-africas-booming-meat-industry Search in Google Scholar

Agriculture and Rural Development, European Commission (2023). Beef: Information on the role of market measures, market monitoring, and the legal bases for the beef sector. https://agriculture.ec.europa.eu/farming/animal-products/beef_en Search in Google Scholar

AgriFutures Australia (2017). Beef cattle. AgriFutures Australia; 2017. Available from: http://www.agrifutures.com.au/farm-diversity/beef-cattle/ Search in Google Scholar

Baumgard L.H., Rhoads R.P. (2012). Ruminant production and metabolic responses to heat stress. J. Anim. Sci., 90: 1855–1865. Search in Google Scholar

Bell A.W., Charmley E., Hunter R.A., Archer J.A. (2011). The Australasian beef industries – challenges and opportunities in the 21st century. Anim Front., 1: 10–19. Search in Google Scholar

Benson E.A. (2022). These 21 countries have the highest cattle population and beef production volumes in Africa. https://africa.businessinsider.com/local/markets/21-african-countries-with-the-highest-cattle-population/r9bc483 Search in Google Scholar

Bogale G.A., Temesgen T. (2021). Impacts and challenges of seasonal variabilities of el Niño and la Niña on crop and livestock production in the central rift valley of Ethiopia: a review. Environ. Pollut. Clim. Chang., 5: 199. Search in Google Scholar

Brown-Brandl T.M., Jones D.D. (2011). Feedlot cattle susceptibility to heat stress: An animal-specific model. Transactions of the ASABE, 54: 583–598. Search in Google Scholar

Buczinski B. (2010). Production de viande bovine: environment pollution and climate change perspectives à moyen terme. Point Vétérinaire, 41: 139–144. Search in Google Scholar

Bunmee T., Chaiwang N., Kaewkot C., Jaturasitha S. (2018). Current situation and future prospects for beef production in Thailand – a review. Asian-Australas J. Anim. Sci., 31: 968–975. Search in Google Scholar

Bunning H., Wall E. (2020). The effects of weather on beef carcass and growth traits. Animal, 16: 100657. Search in Google Scholar

Busby D., Loy D. (1997). Heat stress in feedlot cattle: producer survey results. Beef Research Report No.: Paper 26. Available from https://lib.dr.iastate.edu/beefreports_1996/26/ Search in Google Scholar

Capper J.L. (2011). Replacing rose-tinted spectacles with a high-powered microscope: The historical vs. modern carbon footprint of animal agriculture. Anim. Front., 1: 26–32. Search in Google Scholar

Cerles A., Agabriel J., Lherm M., Poux X. (2017). Foresight study of ruminant meat sector in the Massif Central area of France in 2050. Viandes Prod. Carnés, VPC-201733-2-2 http://viandesetproduitscarnes.com/index.php/fr/113-resumesdes-articles-economie/827-etude-prospective-des-filieresviande-de-ruminants-du-massif-central-a-l-horizon-2050 Search in Google Scholar

Chatellier V. (2016). Le Commerce International, europeen et francais de produits laitiers. Inra Prod. Anim., 29: 143–162. Search in Google Scholar

Christiaensen L. (2020). Africa imports billions in food a year. It could be creating local jobs instead. World Bank Blogs, November 9. https://blogs.worldbank.org/jobs/africaimports-billions-food-year-it-could-becreating-local-jobs-instead Search in Google Scholar

Clarke H. (2021). https://ahdb.org.uk/news/eu-beef-production-stable-so-far-in-2021. Search in Google Scholar

Collier R.J., Baumgard L.H., Zimbelman R.B., Xiao Y. (2019). Heat stress: Physiology of acclimation and adaptation. Anim. Front., 9: 12–19. Search in Google Scholar

Cruz R.V., Harasawa H., Lal M., Wu S., Anokhin Y., Punsalmaa B. (2007). Asia climate change 2007: impacts, adaptation and vulnerability. In: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (eds). Cambridge University Press, pp. 469–506. Search in Google Scholar

Danfar A. (1994). Nutrient metabolism and utilization in the liver. Livest. Prod. Sci., 39: 115–127. Search in Google Scholar

Datar I., Betti M. (2010). Possibilities for an in vitro meat production system. Innov. Food Sci. Emerg. Technol., 11: 13–22. Search in Google Scholar

De Boer J., Schosler H., Aiking H. (2014). “Meatless days” or “less but better”? Exploring strategies to adapt Western meat consumption to health and sustainability challenges. Appetite, 76: 120–128. Search in Google Scholar

Drouillard J.S. (2018). Current situation and future trends for beef production in the United States of America – a review. Asian-Australas J. Anim. Sci., 31: 1007–1016. Search in Google Scholar

FAO, Food and Agriculture Organization (2017). The Future of Food and Agriculture: Scenarios for Alternative Development Pathways to 2050. Rome: 163. Search in Google Scholar

FAO (2003). World agriculture: towards 2015/2030. An FAO perspective. Rome (EP Ltd Edn). London, UK. Search in Google Scholar

FAPRI, Food Agricultural Policy Research Institute (2011). US and World Agricultural Outlook. Iowa State University and University of Missouri, Columbia, USA. Search in Google Scholar

FAPRI, Food Agricultural Policy Research Institute (2012). US and World Agricultural Outlook. Ames, IA and Columbia, MO, USA: Iowa State University and University of Missouri, http://www.fapri.iastate.edu/outlook/2012/ Search in Google Scholar

Foxcroft G.R., Dixon W.T., Novak S., Putman C.T., Town S.C., Vinsky M.D. (2006). The biological basis for prenatal programming of postnatal performance in pigs. J. Anim. Sci., 84: E105–E112. Search in Google Scholar

Galyean M.L., Ponce C., Schutz J. (2011). The future of beef production in North America. Anim. Front., 1: 2. Search in Google Scholar

Gao S., Guo J., Quan S., Nan X., Fernandez M.S., Baumgard L., Bu D. (2017). The effects of heat stress on protein metabolism in lactating Holstein cows. J. Dairy Sci., 100: 5040–5049. Search in Google Scholar

Gaughan J.B., Mader T.L., Holt S.M., Sullivan M.L., Hahn G.L. (2010). Assessing the heat tolerance of 17 beef cattle genotypes. Int. J. Biometeorol., 54: 617–627. Search in Google Scholar

Geraert P.A., Padilha J.C., Guillaumin S. (1996). Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: Growth performance, body composition and energy retention. Br. J. Nutr., 75: 195–204. Search in Google Scholar

Global Trade Magazine (2020). https://www.globaltrademag.com/asias-beef-market-2020-positive-outlook-for-china-negative-expectations-for-india/ Search in Google Scholar

Gokirmakli C., Bayram M. (2017). Future of meat industry. MOJ Food Process Technol., 5: 00117. Search in Google Scholar

Graca J., Calheiros M.M., Oliveira A. (2016). Situating moral disengagement: Motivated reasoning in meat consumption and substitution. Personal. Individ. Differ., 90: 353–364. Search in Google Scholar

Hansen P. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci., 82: 349–360. Search in Google Scholar

Havlík P., Valin H., Mosnier A., Obersteiner M., Baker J.S., Herrero M., Rufino M.C., Schmid E. (2012). Crop productivity and the global livestock sector: Implications for land use change and greenhouse gas emissions. Am. J. Agric. Econ., 95: 442–448. Search in Google Scholar

Havstad K.M., Brown J.R., Estell R., Elias E., Rango A., Steele C. (2018). Vulnerabilities of Southwestern US Rangeland-based animal agriculture to climate change. Clim. Change., 148: 371–386. Search in Google Scholar

Herbut P., Hoffmann G., Angrecka S., Godyń D., Corrêa Vieira F.M., Adamczyk K., Kupczyński R. (2021). The effects of heat stress on the behaviour of dairy cows – a review, Ann. Anim. Sci., 21: 385–402. Search in Google Scholar

Hermansen J.E., Kristensen T. (2011). Management options to reduce the carbon footprint of livestock products. Anim. Front., 1: 33–39. Search in Google Scholar

Herreroa M., Havlíkb P., Valinc H., An Notenbaertb, Rufinob M.C., Thorntond P.K., Blümmelb M., Weissc F., Graceb D., Obersteiner M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. PNAS, 110: 20888–20893. Search in Google Scholar

Hocquette J.F., Chatellier V. (2011). Prospects for the European beef sector over the next 30 years. Anim. Front., 1: 20–28. Search in Google Scholar

Hocquette J.F., Ellies-Oury M.P., Lherm M., Pineau C., Deblitz C., Farmer L. (2018). Current situation and future prospects for beef production in Europe – a review. Asian-Australas J. Anim. Sci., 31: 1017–1035. Search in Google Scholar

Hyde M., Thorpe S., Waring A., Moir B., Gunning-Trant C. (2017). South America: An emerging competitor for Australia’s beef industry. Canberra, ACT, Australia: Australian Bureau of Agriculture and Resource Economics. ABARES Research Report., 16: 14. Search in Google Scholar

Index Mundi (2011). Mexico animal numbers, cattle beef cows beginning stocks by year. http://www.indexmundi.com/agriculture/?country=mx&commodity=cattle&graph=beef-cows-beginning-stocks Search in Google Scholar

Intergovernmental Panel on Climate Change (2018). 2018 – special report: global warming of 1.5°C and Climate change synthesis report. Search in Google Scholar

Jacob S.T. (1995). Regulation of ribosomal gene transcription. Biochem. J., 306: 617–626. Search in Google Scholar

Jenane C., Ulimwengu J.M., Tadesse G. (2022). Agrifood processing strategies for successful food systems transformation in Africa. ReSAKSS 2022 Annual Trends and Outlook Report. Kigali and Washington, DC: AKADEMIYA2063 and International Food Policy Research Institute (IFPRI). Search in Google Scholar

Johnson J.S., Sanz Fernandez M.V., Patience J.F., Ross J.W., Gabler N.K., Lucy M.C., Safranski T.J., Rhoads R.P., Baumgard L.H. (2015). Effects of in utero heat stress on postnatal body composition in pigs: II. Finishing phase. J. Anim. Sci.., 93: 82–92. Search in Google Scholar

Kadzere C.T., Murphy M.R., Silanikove N., Maltz E. (2002). Heat stress in lactating dairy cows: A review. Livest. Prod. Sci., 77: 59–91. Search in Google Scholar

Kim W.S., Kim J., Lee H.G. (2022). Identification of potential biomarkers and metabolic pathways of different levels of heat stress in beef calves Int. J. Mol. Sci., 23: 10155. Search in Google Scholar

Kristensen L., Støier S., Würtz J., Hinrichsen L. (2014). Trends in meat science and technology: The future looks bright, but the journey will be long. Meat Sci., 98: 322–329. Search in Google Scholar

Kuo T., Harris C.A., Wang J.C. (2013). Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol. Cell. Endocrinol., 380: 79–88. Search in Google Scholar

Lamy E., van Harten S., Sales-Baptista E., Guerra M.M., de Almeida A.M. (2012). Factors influencing livestock productivity. In: Environmental stress and amelioration in livestock production. Springer Berlin Heidelberg, pp. 19–51. Search in Google Scholar

Landes M., Melton A., Edwards S. (2016). From where the buffalo roam: India’s beef exports, LDPM–264–01, U.S. Department of Agriculture, Economic Research Service. Search in Google Scholar

Leroy F., Barnard N.D. (2020). Children and adults should avoid consuming animal products to reduce risk for chronic disease: NO. Am. J. Clin. Nutr., 112: 931–936. Search in Google Scholar

MacDonald J.M., McBride W.D. (2009). The transformation of U.S. livestock agriculture: Scale, efficiency, and risks. EIB No. 43, USDA-ERS, Washington, DC. Search in Google Scholar

Magrin L., Brscic M., Lora I., Rumor C., Tondello L., Cozzi G., Gottardo F. (2017). Effect of a ceiling fan ventilation system on finishing young bulls’ health, behaviour and growth performance. Animal, 11: 1084–1092. Search in Google Scholar

Mahjoubi E., Amanlou H., Mirzaie-Alamouti H.R., Aghaziarati N., Hossein Yazdi M., Noori G.M., Yuan K., Baumgard L.H. (2014). The effect of cyclical and mild heat stress on productivity and metabolism in Afshari lambs. J. Anim. Sci., 92: 1007–1014. Search in Google Scholar

Malek L., Umberger W.J. (2021). Distinguishing meat reducers from unrestricted omnivores, vegetarians and vegans: A comprehensive comparison of Australian consumers. Food Qual. Prefer., 88: 104081. Search in Google Scholar

Maplecroft (2015). Climate Change and Environmental Risk Atlas 2015 https://maplecroft.com/portfolio/new-analysis/2014/10/29/climate-change-and-lack-food-security-multiply-risks-conflict-andcivil-unrest-32-countries-maplecroft/ Search in Google Scholar

Marchesini G., Cortese M., Mottaran D., Ricci R., Serva L., Contiero B., Segato S., Andrighetto I. (2018). Effects of axial and ceiling fans on environmental conditions, performance and rumination in beef cattle during the early fattening period. Livest. Sci., 214: 225–230. Search in Google Scholar

Marel (2023). Oceania beef processors poised to capitalise on beef exports. https://www.marel.com/oceania-beef-processors-poised-to-capitalise-on-beef-exports/ Search in Google Scholar

Miller V., Reedy J., M.S. [...], and Global Dietary Database. (2022). Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database. Lancet Planet. Health., 6: e243–e256. Search in Google Scholar

Mishra S.R. (2021). Thermoregulatory responses in riverine buffaloes against heat stress: An updated review. J. Therm. Biol., 96: 102844. Search in Google Scholar

Mitlöhner F.M., Galyean M.L., McGlone J.J. (2001). Shade effects on performance, carcass traits, physiology, and behavior of heat-stressed feedlot heifers. J. Anim. Sci., 80: 2043–2050. Search in Google Scholar

MLA, Meat and Livestock Australia (2017). Fast Facts. Meat and Livestock Australia; 2017 Available from: https://www.mla.com.au/.../mla.../fast-facts.../mla_beeffast-facts-2017_final.pdf Search in Google Scholar

MLA, Meat and Livestock Australia (2020). https://www.mla.com.au/prices-markets/market-ews/2020/consumption-growth-in-asia-to-fuel-meat-consumption/ Search in Google Scholar

MLA, Meat and Livestock Australia (2022). Global beef industry and trade report. Search in Google Scholar

Nardone A., Ronchi B., Lacetera N., Ranieri M.S., Bernabucci U. (2010). Effects of climate change on animal production and sustainability of livestock systems. Livest. Sci., 130: 57–69. Search in Google Scholar

National Bureau of Statistics of the People’s Republic of China. (2016). Beijing, China: Organization for Economic Co-operation and Development. Search in Google Scholar

O′Brien M.D., Rhoads R.P., Sanders S.R., Duff G.C., Baumgard L.H. (2010). Metabolic adaptations to heat stress in growing cattle. Domest. Anim. Endocrinol., 38: 86–94. Search in Google Scholar

OECD, Organization for Economic Co-operation and Development (2022). Meat Consumption (Indicator). https://data.oecd.org/agroutput/meat-consumption.htm Search in Google Scholar

OECD-FAO, Organization for Economic Co-operation and Development- Food and Agriculture Organization (2021). OECD-FAO Agricultural Outlook 2021-2030, OCED Publishing, Paris. Search in Google Scholar

OECD-FAO, Organization for Economic Co-operation and Development- Food and Agriculture Organization (2022). Agricultural Outlook 2022-2031,OECD iLibrary6. Meat. https://www.oecd-ilibrary.org/sites/ab129327-en/index.html?itemId=/content/component/ab129327-en Search in Google Scholar

OECD-FAO (2017). OECD-FAO Agricultural Outlook 2017-2026. Paris, France: OECD Publishing; c2017 http://dx.doi.org/10.1787/agr_outlook-2017-en Search in Google Scholar

Peel D.S., Johnson R.J., Matthews Jr K.H. (2010). Cow-calf beef production in Mexico. LPD-M-196-01. USDA-ERS, Washington, DC. http://www.ers.usda.gov/publications/ldp/2010/10oct/ldpm19601/ldpm19601.pdf Search in Google Scholar

Pereira L. (2017). Climate change impacts on agriculture across Africa. Oxford Res Encyclop. Environ. Sci., 33. Search in Google Scholar

Pohjolainen P., Tapio P., Vinnari M., Jokinen P., Rasanen P. (2016). Consumer consciousness on meat and the environment – exploring differences. Appetite, 101: 37–45. Search in Google Scholar

Polley H.W., Briske D.D., Morgan J.A., Wolter K., Bailey D.W., Brown J.R. (2013). Climate change and North American rangelands: trends, projections, and implications. Rangeland Ecol. Manag., 66: 493–511. Search in Google Scholar

Poppi D.P., McLennan S.R. (2010). Nutritional research to meet future challenges. Anim. Prod. Sci., 50: 329–338. Search in Google Scholar

Ravagnolo O., Misztal I. (2000). Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci., 83: 2126–2130. Search in Google Scholar

Renaudeau D., Collin A., Yahav S., de Basilio V., Gourdine J.L., Collier R.J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6: 707–728. Search in Google Scholar

Research and Markets (2023). https://www.researchdive.com/408/the-southeast-asia-meat-product-market. Southeast Asia Meat Product Market Size 2026, New Growth Opportunities. Search in Google Scholar

Ritchie H., Rosado R., Roser M. (2017). Meat and Dairy Production. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/meat-production Search in Google Scholar

Robertshaw D. (1985). Heat loss of cattle. In: Stress Physiology in Livestock. Basic Principles, Vol. 1. CRC Press, Florida, pp. 55–66. Search in Google Scholar

Rojas-Downing M., Nejadhashemi A.P., Harrigan T., Woznicki S.A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk. Manag., 16: 145–163. Search in Google Scholar

Ronchi B., Lacetera N., Bernabucci U., Verini Supplizi A., Nardone A. (1999). Distinct and common effects of heat stressand restricted feeding on metabolic status of Holstein heifers. Zoot. Nutriz. Anim., 25: 11–20. Search in Google Scholar

Rosegrant M.W., Fernandez M., Sinha A. (2009). Looking into the future for agriculture and AKST. In: International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), McIntyre B.D., Herren H.R., Wakhungu J., Watson R.T. (eds). Agriculture at a crossroads, Island Press, Washington, DC, pp. 307–376. Search in Google Scholar

Saizi T., Mpayipheli M., Idowu P.A. (2019). Heat tolerance level in dairy herds: a review on coping strategies to heat stress and ways of measuring heat tolerance. J. Anim. Behav. Biometeorol., 7: 39–51. Search in Google Scholar

Sant’Anna A.C., Valente T.D.S., Magalhaes A.F.B., Espigolan R., Ceballos M.C., De Albuquerque L.G., Da Costa M.J.R.P. (2019). Relationships between temperament, meat quality, and carcass traits in Nellore cattle. J. Anim. Sci., 97: 4721–4731. Search in Google Scholar

Seleshi L. (2021). What’s behind Africa’s skyrocketing imports yet increased production growth? The Africa Report, September 2. https://www.theafricareport.com/123719/whatsbehindafricas-skyrocketing-imports-yet-increasedproduction-growth/ Search in Google Scholar

Serdeczny O., Adams S., Baarsch F., Coumou D., Robinson A., Hare W. (2016). Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions. Reg. Environ. Change., 17: 1585–1600. Search in Google Scholar

Short E.E., Caminade C., Thomas B.N. (2017). Climate change contribution to the emergence or re-emergence of parasitic diseases. Infect. Dis. Res. Treat., 10: 1–7. Search in Google Scholar

Sofos J.N. (2008). Challenges to meat safety in the 21st century. Meat Sci., 78: 3–13. Search in Google Scholar

St-Pierre N.R., Cobanov B., Schnitkey G. (2003). Economic losses from heat stress by US livestock industries. J. Dairy Sci., 86: e52–77. Search in Google Scholar

Summer A., Lora I., Formaggioni P., Gottardo F. (2019). Impact of heat stress on milk and meat Production. Anim. Front., 9: 1. Search in Google Scholar

Tao S., Dahl G.E. (2013). Heat stress effects during late gestation on dry cows and their calves. J. Dairy Sci., 96: 4079–4093. Search in Google Scholar

Temim S., Chagneau A., Peresson R., Tesseraud S. (2000). Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25% protein diets. J. Nutr., 130: 813–819. Search in Google Scholar

Thornton P., Nelson G., Mayberry D., Herrero M. (2022). Impacts of heat stress on global cattle production during the 21st century: a modelling study. Lancet, 6: e192–201. Search in Google Scholar

Thornton P.K. (2010). Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 365: 2853–2867. Search in Google Scholar

United States Environmental Protection Agency (2016). www.epa.gov. Search in Google Scholar

van den Pol-van Dasselaar A. (2005). Grazing on the move. Prakrijk Rapport Rundvee 81, Animal Sciences Group, Wageningen UR, Lelystad, The Netherlands. Search in Google Scholar

Van Laer E., Moons C.P.H., Sonck B., Tuyttens F.A.M. (2014). Importance of outdoor shelter for cattle in temperate climates. Livest. Sci., 159: 87–101. Search in Google Scholar

Vasconcelos A.A., de Albuquerque C.C., de Carvalho J.F., Façanha D.A.E., Lima F.R.G., Silveira R.M.F., Ferreira J. (2020). Adaptive profile of dairy cows in a tropical region. Int. J. Biometerol., 64: 105–113. Search in Google Scholar

Vinci C. (2022). EPRS-European Parliamentary Research Service. European Union beef sector Main features, challenges and prospects. Search in Google Scholar

Wang S.Q., Chang Q., Li B.L., Wang Y. (2016) Empirical analysis on international competitiveness and export influencing factors of Chinsese beef: Based on the background of trade liberalization. J. China Agric. Univ., 21: 166–178. Search in Google Scholar

Wankar A.K., Singh G., Yadav B. (2014) Thermoregulatory and adaptive responses of adult buffaloes (Bubalus bubalis) during hyperthermia: Physiological, behavioral, and metabolic approach. Vet. World., 7: 825–830. Search in Google Scholar

Wankar A.K., Singh G., Yadav B. (2017). Biochemical profile and methane emission during controlled thermal stress in buffaloes (Bubalus Bubalis). Buffalo Bull. 36: 15–22. Search in Google Scholar

Wankar A.K., Singh G., Yadav B. (2019). Effect of temperature X THI on acclimatization in buffaloes subjected to simulated heat stress: physio-metabolic profile, methane emission and nutrient digestibility. Biol. Rhythm Res., 1–15. Search in Google Scholar

Wankar A.K., Rindhe S.N., Doijad N.S. (2021). Review-Heat stress in dairy animals and current milk production trends, economics, and future perspectives: the global scenario. Trop. Anim. Health Prod., 53: 70. Search in Google Scholar

WDI, World Bank World Development Indicators Database (2017). Washington, DC: World Bank. https://data.worldbank.org/products/wdi Search in Google Scholar

Wheelock J.B., Rhoads R.P., VanBaale M.J., Sanders S.R., Baumgard L.H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci., 93: 644–655. Search in Google Scholar

Whitnall T., Pitts N. (2019). ABARES Agricultural Commodities. Global trends in meat consumption. Search in Google Scholar

World Consumption of Meat (2023) https://www.theworldcounts.com/challenges/consumption/foods-and-beverages/world-consumption-of-meat Search in Google Scholar

Yadav B., Singh G., Wankar A.K., Dutta N., Chaturvedi V.B., Verma M.R. (2016) Effect of simulated heat stress on digestibility, methane emission and metabolic adaptability in crossbred cattle. Asian Australas. J. Anim. Sci., 29: 1585–1592. Search in Google Scholar

Zehetmeier M., Baudracco J., Hoffmann H., Heißenhuber A. (2012). Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Animal, 6: 154–166. Search in Google Scholar

Zhang M., Dunshea F.R., Warner R.D., DiGiacomo K., Amponsah R.O., Chauchan S.S. (2020). Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol., 64: 1613–1628. Search in Google Scholar

Zhang Z.B., XU P., Duan Z.Y. (2015). Food security should be the ultimate goal of agricultural modernization in China. Chinese J. Eco-Agric., 23: 1215–1219. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine