Acceso abierto

Investigation of the effects of heavy metals (copper, cobalt, manganese, selenium, and zinc) on fish immune systems: an overview


Cite

Adeyemi J.A., Ogunwole G.A., Bamidele O.S., Adedire C.O. (2022). Effects of pre-treatment with waterborne selenium on redox homeostasis and humoral innate immune parameters in African catfish, Clarias gariepinus (Burchell, 1822), experimentally challenged with Serratia marcescens. Fish Physiol. Biochem., 48: 409–418. Search in Google Scholar

Afshari A., Sourinejad I., Gharaei A., Johari S.A., Ghasemi Z. (2021). The effects of diet supplementation with inorganic and nanoparticulate iron and copper on growth performance, blood biochemical parameters, antioxidant response and immune function of snow trout Schizothorax zarudnyi (Nikolskii, 1897). Aquaculture, 539: 736638. Search in Google Scholar

Al-Khalaifah H., Khalil A.A., Amer S.A., Shalaby S.I., Badr H.A., Farag M.F.M., Altohamy D.E., Abdel Rahman A.N. (2020). Effects of dietary doum palm fruit powder on growth, antioxidant capacity, immune response, and disease resistance of African catfish, Clarias gariepinus (B.). Animals, 10: 1407. Search in Google Scholar

Aliko V., Qirjo M., Sula E., Morina V., Faggio C. (2018). Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol., 76: 101–109. Search in Google Scholar

Antony Jesu Prabhu P., Schrama J.W., Kaushik S.J. (2016). Mineral requirements of fish: a systematic review. Rev. Aquacult., 8: 172–219. Search in Google Scholar

Aschner J.L., Aschner M. (2005). Nutritional aspects of manganese homeostasis. Mol. Asp. Med., 26: 353–362. Search in Google Scholar

Awad A., Zaglool A.W., Ahmed S.A.A., Khalil S.R. (2019). Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and Nano-Zinc oxide dietary supplements. Fish Shellfish Immunol., 93: 336–343. Search in Google Scholar

Baby J., Raj J.S., Biby E.T., Sankarganesh P., Jeevitha M.V, Ajisha S.U., Rajan S.S. (2010). Toxic effect of heavy metals on aquatic environment. Int. J. Biol. Chem. Sci., 4. Search in Google Scholar

Bagheri S., Gholamhosseini A., Banaee M. (2022). Investigation of different nutritional effects of dietary chromium in fish: a literature review. Biol. Trace Elemen. Res., 1–9. Search in Google Scholar

Baker R.T.M., Handy R.D., Davies S.J., Snook J.C. (1998). Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus. Marine Environ. Res., 45: 357–365. Search in Google Scholar

Baudin J.P., Adam C., Garnier-Laplace J. (2000). Dietary uptake, retention and tissue distribution of 54Mn, 60Co and 137Cs in the rainbow trout (Oncorhynchus mikiss Walbaum). Water Res., 34: 2869–2878. Search in Google Scholar

Berntssen M.H.G., Betancor M., Caballero M.J., Hillestad M., Rasinger J., Hamre K., Sele V., Amlund H., Ørnsrud R. (2018). Safe limits of selenomethionine and selenite supplementation to plant-based Atlantic salmon feeds. Aquaculture, 495: 617–630. Search in Google Scholar

Berntssen M.H.G., Lundebye A.-K., Maage A. (1999). Effects of elevated dietary copper concentrations on growth, feed utilisation and nutritional status of Atlantic salmon (Salmo salar L.) fry. Aquaculture, 174: 167–181. Search in Google Scholar

Berntssen M.H.G., Sundal T.K., Olsvik P.A., Amlund H., Rasinger J.D., Sele V., Hamre K., Hillestad M., Buttle L., Ørnsrud R. (2017). Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar). Aquat. Toxic., 192: 116–126. Search in Google Scholar

Berntssen M.H.G., Waagbø R., Toften H., Lundebye A. (2003). Effects of dietary cadmium on calcium homeostasis, Ca mobilization and bone deformities in Atlantic salmon (Salmo salar L.) parr. Aquacult. Nutr., 9: 175–183. Search in Google Scholar

Bidlack W.R. (1997). Handbook of Nutritional Essential Mineral/Elements. Taylor & Francis. Search in Google Scholar

Bury N.R., Walker P.A., Glover C.N. (2003). Nutritive metal uptake in teleost fish. J. Experiment. Biol., 206: 11–23. Search in Google Scholar

Carolin C.F., Kumar P.S., Saravanan A., Joshiba G.J., Naushad M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng., 5: 2782–2799. Search in Google Scholar

Cerezuela R., Guardiola F.A., Cuesta A., Esteban M.Á. (2016). Enrichment of gilthead seabream (Sparus aurata L.) diet with palm fruit extracts and probiotics: effects on skin mucosal immunity. Fish Shellfish Immunol., 49: 100–109. Search in Google Scholar

Chandrapalan T., Kwong R.W.M. (2021). Functional significance and physiological regulation of essential trace metals in fish. J. Experiment. Biol., 224: jeb238790. Search in Google Scholar

Choi Y.J., Kim N.N., Shin H.S., Park M.S., Kil G.-S., Choi C.Y. (2013). Effects of waterborne selenium exposure on the antioxidant and immunological activity in the goldfish, Carassius auratus. Mol. Cell. Toxic., 9: 365–373. Search in Google Scholar

Clearwater S.J., Farag A.M., Meyer J.S. (2002). Bioavailability and toxicity of dietborne copper and zinc to fish. Comp. Biochem. Physiol. Part C: Toxic. Pharmac., 132: 269–313. Search in Google Scholar

Cossarini-Dunier M., Demael A., Lepot D., Guerin V. (1988). Effect of manganese ions on the immune response of carp (Cyprinus carpio) against Yersinia ruckeri. Develop. Comp. Immunol., 12: 573–579. Search in Google Scholar

Damasceno F.M., Fleuri L.F., Sartori M.M.P., Amorim R.L., Pezzato L.E., da Silva R.L., Carvalho P.L.P.F., Barros M.M. (2016). Effect of dietary inorganic copper on growth performance and hematological profile of Nile tilapia subjected to heat-induced stress. Aquaculture, 454: 257–264. Search in Google Scholar

Dawood M.A.O. (2021). Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Rev. Aquacult., 13: 642–663. Search in Google Scholar

De Riu N., Lee J.-W., Huang S.S.Y., Moniello G., Hung S.S.O. (2014). Effect of dietary selenomethionine on growth performance, tissue burden, and histopathology in green and white sturgeon. Aquat. Toxic., 148: 65–73. Search in Google Scholar

Delavari N.M., Gharaei A., Mirdar H.J., Davari A., Rastiannasab A. (2022). Modulatory effect of dietary copper nanoparticles and vitamin C supplementations on growth performance, hematological and immune parameters, oxidative status, histology, and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 48: 33–51. Search in Google Scholar

Delves P.J., Roitt I.M. (2000). The immune system. New Engl. J. Med., 343:37–49. Search in Google Scholar

e Sá M.V.do C., Pezzato L.E., Lima M.M.B.F., de Magalhães Padilha P. (2004). Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets. Aquaculture, 238: 385–401. Search in Google Scholar

El Basuini M.F., El-Hais A.M., Dawood M.A.O., Abou-Zeid A.E.-S., EL-Damrawy S.Z., Khalafalla M.M.E.-S., Koshio S., Ishikawa M., Dossou S. (2016). Effect of different levels of dietary copper nanoparticles and copper sulfate on growth performance, blood biochemical profiles, antioxidant status and immune response of red sea bream (Pagrus major). Aquaculture, 455: 32–40. Search in Google Scholar

Esteban M.A., Cordero H., Martínez-Tomé M., Jiménez-Monreal A.M., Bakhrouf A., Mahdhi A. (2014). Effect of dietary supplementation of probiotics and palm fruits extracts on the antioxidant enzyme gene expression in the mucosae of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol., 39: 532–540. Search in Google Scholar

Fountoulaki E., Morgane H., Rigos G., Antigoni V., Mente E., Sweetman J., Nengas I. (2010). Evaluation of zinc supplementation in European sea bass (Dicentrarchus labrax) juvenile diets. Aquacult. Res., 41: e208–e216. Search in Google Scholar

Gatlin III D.M., Wilson R.P. (1984). Dietary selenium requirement of fingerling channel catfish. J. Nutr., 114: 627–633. Search in Google Scholar

Ghafarifarsani H., Hoseinifar S.H., Raeeszadeh M., Vijayaram S., Rohani M.F., Van Doan H., Sun Y.-Z. (2023). Comparative effect of chemical and green zinc nanoparticles on the growth, hematology, serum biochemical, antioxidant parameters, and immunity in serum and mucus of goldfish, Carassius auratus (Linnaeus, 1758). Biol. Trace Element. Res., 1–15. Search in Google Scholar

Ghazi S., Diab A.M., Khalafalla M.M., Mohamed R.A. (2022). Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biol. Trace Element. Res., 200: 364–374. Search in Google Scholar

Gopi N., Vijayakumar S., Thaya R., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Al-Anbr M.N., Vaseeharan B. (2019). Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. J. Trace Element. Med. Biol., 55: 170–179. Search in Google Scholar

Guardiola F.A., Porcino C., Cerezuela R., Cuesta A., Faggio C., Esteban M.A. (2016). Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol., 52: 298–308. Search in Google Scholar

Hamilton S.J. (2004). Review of selenium toxicity in the aquatic food chain. Sci. Total Environ., 326: 1–31. Search in Google Scholar

Hansen J.A., Lipton J., Welsh P.G., Cacela D., MacConnell B. (2004). Reduced growth of rainbow trout (Oncorhynchus mykiss) fed a live invertebrate diet pre‐exposed to metal‐ contaminated sediments. Environ. Toxic. Chemist: Int. J., 23: 1902–1911. Search in Google Scholar

Harris E.D. (2003). Basic and clinical aspects of copper. Crit. Rev. Clin. Lab. Sci., 40: 547–586. Search in Google Scholar

Hasnat A., Rani B., Kohli M.P.S., Chandraprakash G. (2012). Zinc supplementation and its effect on thermal stress resistance in Carassius auratus Fry. Israeli J. Aquacult.-Bamidgeh., 64. Search in Google Scholar

Hesketh J. (2008). Nutrigenomics and selenium: gene expression patterns, physiological targets, and genetics. Annu. Rev. Nutr., 28: 157–177. Search in Google Scholar

Hicks B.D., Hilton J.W., Ferguson H.W. (1984). Influence of dietary selenium on the occurrence of nephrocalcinosis in the rainbow trout, Salmo gairdneri Richardson. J. Fish Dis., 7: 379–389. Search in Google Scholar

Hilton J.W., Hodson P.V, Slinger S.J. (1980). The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J. Nutr., 110: 2527–2535. Search in Google Scholar

Hodson P.V, Hilton J.W. (1983). The nutritional requirements and toxicity to fish of dietary and waterborne selenium. Ecol. Bull., pp. 335–340. Search in Google Scholar

Horning K.J., Caito S.W., Tipps K.G., Bowman A.B., Aschner M. (2015). Manganese is essential for neuronal health. Annu. Rev. Nutr., 35: 71. Search in Google Scholar

Hoseinifar S.H., Dadar M., Khalili M., Cerezuela R., Esteban M.Á. (2017). Effect of dietary supplementation of palm fruit extracts on the transcriptomes of growth, antioxidant enzyme and immune‐related genes in common carp (Cyprinus carpio) fingerlings. Aquacult. Res., 48: 3684–3692. Search in Google Scholar

Hosnedlova B., Kepinska M., Skalickova S., Fernandez C., Ruttkay-Nedecky B., Malevu T.D., Sochor J., Baron M., Melcova M., Zidkova J. (2017). A summary of new findings on the biological effects of selenium in selected animal species – a critical review. Int. J. Mol. Sci., 18: 2209. Search in Google Scholar

Hoyle I., Shaw B.J., Handy R.D. (2007). Dietary copper exposure in the African walking catfish, Clarias gariepinus: Transient osmoregulatory disturbances and oxidative stress. Aquatic. Toxicol., 83: 62–72. Search in Google Scholar

Huang Q., Wang E., Dong X., Tan B., Chi S., Yang Q., Zhang S., Liu H., Yang Y. (2018). Investigations on zinc bioavailability of different sources and dietary zinc requirement in juvenile grouper Epinephelus coioides. Aquacult. Res., 49: 2763–2773. Search in Google Scholar

Jha N., Annamalai A., Esskiraj P., Balamurugan R., Lakra A.K., Tilwani Y.M., Arul V. (2022). Effects of polysaccharide-based silver and selenium nanoparticles on growth performance, biochemical parameters, and immune response of Cyprinus carpio. Fish Shellfish Immunol. Rep., 100062. Search in Google Scholar

Jobling M. (2016). Fish nutrition research: past, present and future. Aquacult. Int., 24: 767–786. Search in Google Scholar

Kabata-Pendias A. (2000). Trace elements in soils and plants. CRC press. Search in Google Scholar

Kamunde C., Grosell M., Higgs D., Wood C.M. (2002). Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): interactions between dietary and waterborne copper uptake. J. Experiment. Biol., 205: 279–290. Search in Google Scholar

Kang J., Kim S., Jang S. (2005). Growth and hematological changes of rockfish, Sebastes schlegeli (Hilgendorf) exposed to dietary Cu and Cd. J. World Aquacult. Soc., 36: 188–195. Search in Google Scholar

Kesbiç O.S., Parrino V., Acar Ü., Yilmaz S., Paro G.Lo, Fazio F. (2020). Effects of Monterey cypress (Cupressus macrocarpa Hartw) leaf essential oil as a dietary supplement on growth performance and haematological and biochemical parameters of common carp (Cyprinus carpio L.). Ann. Anim. Sci., 20: 1411–1426. Search in Google Scholar

Kim S.-G., Kang J.-C. (2004). Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli. Marine Environ. Res., 58: 65–82. Search in Google Scholar

Kishawy A.T.Y., Roushdy E.M., Hassan F.A.M., Mohammed H.A., Abdelhakim T.M.N. (2020). Comparing the effect of diet supplementation with different zinc sources and levels on growth performance, immune response and antioxidant activity of tilapia, Oreochromis niloticus. Aquacult. Nutr., 26: 1926–1942. Search in Google Scholar

Kumar N., Krishnani K.K., Kumar P., Jha A.K., Gupta S.K., Singh N.P. (2017). Dietary zinc promotes immuno-biochemical plasticity and protects fish against multiple stresses. Fish Shellfish Immunol., 62: 184–194. Search in Google Scholar

Kumar N., Krishnani K.K., Singh N.P. (2018). Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biol. Trace Element Res., 186: 267–278. Search in Google Scholar

Kunze J., Bühringer H., Harms U. (1978). Accumulation of Cobalt during embryonic development of rainbow trout (Salmo gairdneri Rich.). Aquaculture, 13: 61–66. Search in Google Scholar

Kupsco A., Schlenk D. (2016). Molecular mechanisms of selenium-Induced spinal deformities in fish. Aquatic Toxic., 179: 143–150. Search in Google Scholar

Labunskyy V.M., Hatfield D.L., Gladyshev V.N. (2014). Selenoproteins: molecular pathways and physiological roles. Physiol. Rev., 94: 739–777. Search in Google Scholar

Lall S.P., Kaushik S.J. (2021). Nutrition and metabolism of minerals in fish. Animals, 11: 2711. Search in Google Scholar

Lanno R.P., Slinger S.J., Hilton J.W. (1985). Maximum tolerable and toxicity levels of dietary copper in rainbow trout (Salmo gairdneri Richardson). Aquaculture, 49: 257–268. Search in Google Scholar

Limsuwan T., Lovell R.T. (1981). Intestinal synthesis and absorption of vitamin B-12 in channel catfish. J. Nutr., 111: 2125–2132. Search in Google Scholar

Linder M.C. (2002). Biochemistry and molecular biology of copper in mammals. In: Handbook of copper Pharmacology and Toxicology, Massaro E.J. (ed.). Humana Press Inc., Totowa, pp. 3–32. Search in Google Scholar

Lovell R.T., Limsuwan T. (1982). Intestinal synthesis and dietary nonessentiality of vitamin B12 for Tilapia nilotica. Trans. Am. Fish. Soc., 111: 485–490. Search in Google Scholar

Luo F., Fu Z., Wang M., Ke Z., Wang M., Wang W., Hasan M., Shu X. (2021). Growth performance, tissue mineralization, antioxidant activity and immune response of oreochromis niloticus fed with conventional and gluconic acid zinc dietary supplements. Aquacult. Nutr., 27: 897–907. Search in Google Scholar

Maage A., Julshamn K., Berge G.E. (2001). Zinc gluconate and zinc sulphate as dietary zinc sources for Atlantic salmon. Aquacult. Nutr., 7: 183–187. Search in Google Scholar

Mendivil C.O. (2021). Dietary fish, fish nutrients, and immune function: A review. Front. Nutr., 7: 617652. Search in Google Scholar

Mertz W. (1993). Chromium in human nutrition: a review. J. Nutr., 123: 626–633. Search in Google Scholar

Miller D.W., Vetter R.J., Atchison G.J. (1980). Effect of temperature and dissolved oxygen on uptake and retention of 54 Mn in fish. Health Physics., 38: 221–225. Search in Google Scholar

Mohseni M., Pourkazemi M., Bai S.C. (2014). Effects of dietary inorganic copper on growth performance and immune responses of juvenile beluga, H uso huso. Aquacult. Nutr., 20: 547–556. Search in Google Scholar

NRC (2011). Nutrient requirements of fish and shrimp. In Animal Nutrition Series, National Research Council of the National Academies (p. 376). The National Academies Press Washington, DC, USA. Search in Google Scholar

Parkin J., Cohen B. (2001). An overview of the immune system. Lancet, 357: 1777–1789. Search in Google Scholar

Parrino V., Cappello T., Costa G., Cannavà C., Sanfilippo M., Fazio F., Fasulo S. (2018). Comparative study of haematology of two teleost fish (Mugil cephalus and Carassius auratus) from different environments and feeding habits. Europ. Zool. J., 85: 193–199. Search in Google Scholar

Poopak H., Raeeszadeh M., Salimi B. (2023). Accumulation of heavy metals in meat and their relationship with water and food intake of aquatic animals in Kermanshah, western Iran. Int. J. Environ. Health Res., pp. 1–13. Search in Google Scholar

Poston H.A., Combs Jr G.F., Leibovitz L. (1976). Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar): gross, histological and biochemical deficiency signs. J. Nutr., 106: 892–904. Search in Google Scholar

Prohaska J.R. (2011). Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv. Nutr., 2: 89–95. Search in Google Scholar

Raeeszadeh M., Gravandi H., Akbari A. (2022). Determination of some heavy metals levels in the meat of animal species (sheep, beef, turkey, and ostrich) and carcinogenic health risk assessment in Kurdistan province in the west of Iran. Environ. Sci. Pollut. Res., 29: 62248–62258. Search in Google Scholar

Rougier F., Troutaud D., Ndoye A., Deschaux P. (1994). Non-specific immune response of Zebrafish, Brachydanio rerio (Hamilton–Buchanan) following copper and zinc exposure. Fish Shellfish Immunol., 4: 115–127. Search in Google Scholar

Rouleau C., Tjälve H., Gottofrey J., Pelletier É. (1995). Uptake, distribution and elimination of 54Mn (II) in the brown trout (Salmo trutta). Environ. Toxicol. Chem.: Int. J., 14: 483–490. Search in Google Scholar

Schultz R., Hermanutz R. (1990). Transfer of toxic concentrations of selenium from parent to progeny in the fathead minnow (Pimephales promelas). Environ. Prot. Agency, Monticello, MN (USA). Search in Google Scholar

Shahjahan M., Taslima K., Rahman M.S., Al-Emran M., Alam S.I., Faggio C. (2022). Effects of heavy metals on fish physiology – a review. Chemosphere, 300: 134519. Search in Google Scholar

Sharma R.K., Agrawal M. (2005). Biological effects of heavy metals: an overview. J. Environ. Biol., 26: 301–313. Search in Google Scholar

Shaw B.J., Handy R.D. (2006). Dietary copper exposure and recovery in Nile tilapia, Oreochromis niloticus. Aquat. Toxic., 76: 111–121. Search in Google Scholar

Shi-Yen S., Chun-Qui L. (1993). No dietary vitamin B12 required for juvenile tilapia Oreochromis niloticus× O. aureus. Comp. Biochem. Physiol Part A: Physiol., 105: 147–150. Search in Google Scholar

Spears J.W., Hansen S.L. (2008). Bioavailability criteria for trace minerals in monogastrics and ruminants. Trace Elements in Animal Production Systems. Wageningen Academic, Wageningen, the Netherlands., 161–177. Search in Google Scholar

Su H., Yakovlev I.A., Van Eerde A., Su J., Clarke J.L. (2021). Plant-produced vaccines: future applications in aquaculture. Front. Plant Sci., 12: 718775. Search in Google Scholar

Tan L., Feng L., Liu Y., Jiang J., Jiang W., Hu K., Li S., Zhou X. (2011). Growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary zinc. Aquacult. Nutr., 17: 338–345. Search in Google Scholar

Tashjian D.H., The S.J., Sogomonyan A., Hung S.S.O. (2006). Bioaccumulation and chronic toxicity of dietary l-selenomethionine in juvenile white sturgeon (Acipenser transmontanus). Aquat. Toxic., 79: 401–409. Search in Google Scholar

Vijayaram S., Ringø E., Zuorro A., van Doan H., Sun Y. (2023). Beneficial roles of nutrients as immunostimulants in aquaculture: A review. Aquacult. Fish. Search in Google Scholar

Wang X., Gao X.-Q., Wang X.-Y., Fang Y.-Y., Xu L., Zhao K.-F., Huang B., Liu B.-L. (2022). Bioaccumulation of manganese and its effects on oxidative stress and immune response in juvenile groupers (Epinephelus moara♀× E. lanceolatus♂). Chemosphere, 297: 134235. Search in Google Scholar

Wangkahart E., Bruneel B., Chantiratikul A., de Jong M., Pakdeenarong N., Subramani P.A. (2022). Optimum dietary sources and levels of selenium improve growth, antioxidant status, and disease resistance: re-evaluation in a farmed fish species, Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 121: 172–182. Search in Google Scholar

Welker T., Barrows F., Overturf K., Gaylord G., Sealey W. (2016). Optimizing zinc supplementation levels of rainbow trout (Oncorhynchus mykiss) fed practical type fishmeal‐ and plant‐based diets. Aquacult. Nutr., 22: 91–108. Search in Google Scholar

Weyh C., Krüger K., Peeling P., Castell L. (2022). The role of minerals in the optimal functioning of the immune system. Nutrients, 14: 644. Search in Google Scholar

Wood C.M., Farrell A.P., Brauner C.J. (2012). Fish physiology: Homeostasis and toxicology of essential metals Fish physiology series (Vol. 31A). Waltham, MA: Academic Press. Search in Google Scholar

Yazhiniprabha M., Gopi N., Mahboob S., Al-Ghanim K.A., Al-Misned F., Ahmed Z., Riaz M.N., Sivakamavalli J., Govindarajan M., Vaseeharan B. (2022). The dietary supplementation of zinc oxide and selenium nanoparticles enhance the immune response in freshwater fish Oreochromis mossambicus against aquatic pathogen Aeromonas hydrophila. J. Trace Elemen. Med. Biol., 69: 126878. Search in Google Scholar

Ye C., Tian L., Yang H., Liang J., Niu J., Liu Y. (2009). Growth performance and tissue mineral content of juvenile grouper (Epinephelus coioides) fed diets supplemented with various levels of manganese. Aquacult. Nutr., 15: 608–614. Search in Google Scholar

Younus N., Zuberi A. (2022). Significance of extrinsic factors for the optimization of dietary cobalt supplementation in Tor putitora fingerlings. Fish Physiol. Biochem., 1–15. Search in Google Scholar

Zee J., Patterson S., Wiseman S., Hecker M. (2016). Is hepatic oxidative stress a main driver of dietary selenium toxicity in white sturgeon (Acipenser transmontanus)? Ecotoxic. Environ. Saf., 133: 334–340. Search in Google Scholar

Zheng D., Kille P., Feeney G.P., Cunningham P., Handy R.D., Hogstrand C. (2010). Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation. BMC Genomics, 11: 1–19. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine