Acceso abierto

Effect of Lincomycin and Butyrate Glycerides Supplementation on Performance, Blood Biochemical Constituents, Immune Response and Nutrient Absorption Related Gene Expression in Broilers


Cite

Abd El-Hack M.E., Ashour E.A., Arif M., Chaudhry M.T., Emam M., Khafaga A.F., Taha A.E., Más D., Dhama K., Farag M.R., Alagawany M. (2021). Organic acids as eco-friendly growth promoters in poultry feed. In: Natural feed additives used in the poultry industry, Alagawany M., Abd El-Hack M.E. (eds). Bentham Science Publishers Pte. Ltd. Singapore. Search in Google Scholar

Ahsan U., CengİZ Ö., Raza I., Kuter E., Chacher M.F.A., Iqbal Z., Umar S., ÇAkir S. (2016). Sodium butyrate in chicken nutrition: the dynamics of performance, gut microbiota, gut morphology, and immunity. World. Poult. Sci. J., 72: 265–275. Search in Google Scholar

Ali S.A., Hasan K.A., Bin Asif H., Abbasi A. (2014). Environmental enterococci: I. Prevalence of virulence, antibiotic resistance and species distribution in poultry and its related environment in Karachi, Pakistan. Lett. Appl. Microbiol. 58: 423–432. Search in Google Scholar

Almeida A.B., Araújo D.N., Strapazzon J.V., Rita C., Dilda A., Balen G., Deolindo G.L., Nesi D., Furlan V.J.M., Pelisser G., Mendes R.E., Fracasso M., Wagner R., Boiago M.M., Silva A.S.D. (2021). Use of blend based on an emulsifier, monolaurin, and glycerides of butyric acid in the diet of broilers: impacts on intestinal health, performance, and meat. An. Acad. Bras. Cienc., 93: e20210687. Search in Google Scholar

Antongiovanni M., Buccioni A., Petacchi F., Leeson S., Minieri S., Martini A., Cecchi R. (2007). Butyric acid glycerides in the diet of broiler chickens: effects on gut histology and carcass composition. It. J. Anim. Sci., 6: 19–25. Search in Google Scholar

Aviagen (2019). Ross Nutrition Specifications. Available at <www.aviagen.com> from http://es.aviagen.com/assets/Tech_Center/Ross_Broiler/RossBroilerNutritionSpecs2019-EN.pdf. Search in Google Scholar

Bassiony S.S., Al-Sagheer A.A., El-Kholy M.S., Elwakeel E.A., Helal A.A., Alagawany M. (2021). Evaluation of Enterococcus faecium NCIMB 11181 and Clostridium butyricum probiotic supplements in post-weaning rabbits reared under thermal stress conditions. It. J. Anim. Sci., 20: 1232–1243. Search in Google Scholar

Bedford A., Gong J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr., 4: 151–159. Search in Google Scholar

Bedford A., Yu H., Squires E.J., Leeson S., Gong J., (2017). Effects of supplementation level and feeding schedule of butyrate glycerides on the growth performance and carcass composition of broiler chickens. Poultry Sci., 96: 3221–3228. Search in Google Scholar

Bedford A., Yu H., Hernandez M., Squires E.J., Leeson S., Hou Y., Gong J. (2018 a). Response of Ross 308 and 708 broiler strains in growth performance and lipid metabolism to diets containing tributyrate glycerides. Can. J. Anim. Sci., 98: 98–108. Search in Google Scholar

Bedford A., Yu H., Hernandez M., Squires E.J., Leeson S., Gong J. (2018 b). Effects of fatty acid glyceride product SILOhealth 104 on the growth performance and carcass composition of broiler chickens. Poultry Sci., 97: 1315–1323. Search in Google Scholar

Broom L.J. (2015). Organic acids for improving intestinal health of poultry. World. Poult. Sci. J., 71: 630–642. Search in Google Scholar

Castanon J.I.R. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Sci., 86: 2466–2471. Search in Google Scholar

Chan G., Guthrie A., Sivaramalingam T., Wilson J., Vancraeynest D., Moody R., Clark S. (2015). A framework for assessing the efficacy of antimicrobials in the control of necrotic enteritis in broiler chickens. J. Appl. Poult. Res., 24: 246–256. Search in Google Scholar

Dalmasso G., Nguyen H.T., Yan Y., Charrier-Hisamuddin L., Sitaraman S.V., Merlin D. (2008). Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity. PLoS One, 3: e2476. Search in Google Scholar

Decuypere J.A., Dierick N.A. (2003). The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview. Nutr. Res. Rev., 16: 193–210. Search in Google Scholar

Deepa K., Purushothaman M.R., Vasanthakumar P., Sivakumar K. (2018). Butyric acid as an antibiotic substitute for broiler chicken − A review. Adv. Anim. Vet. Sci., 6: 63–69. Search in Google Scholar

Ebeid T., Al-Homidan I., Fathi M., Al-Jamaan R., Mostafa M., Abou-Emera O., Abd El-Razik M., Alkhalaf A. (2021). Impact of probiotics and/or organic acids supplementation on growth performance, microbiota, antioxidative status, and immune response of broilers. It. J. Anim. Sci., 20: 2263–2273. Search in Google Scholar

Ebeid T.A., Al-Homidan I.H. (2022). Organic acids and their potential role for modulating the gastrointestinal tract, antioxidative status, immune response, and performance in poultry. World. Poult. Sci. J., 78: 83–101. Search in Google Scholar

El-Saadony M.T., Umar M., Hassan F.-U., Alagawany M., Arif M., Taha A.E., Elnesr S.S., El-Tarabily K.A., Abd El-Hack M.E. (2022). Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis. Anim. Health Res. Rev., 23: 136–146. Search in Google Scholar

Eshak M.G., Elmenawey M.A., Atta A., Gharib H.B., Shalaby B., Awaad M.H. (2016). The efficacy of Na-butyrate encapsulated in palm fat on performance of broilers infected with necrotic enteritis with gene expression analysis. Vet. World., 9: 450–457. Search in Google Scholar

Farag M.R., Alagawany M., Abd El-Hack M.E., Elnesr S.S., Moustafa G.G., Dhama K., El-Sharkawy N.I. (2021). Antibiotics as growth promoters in poultry feeding. In: Natural feed additives used in the poultry industry, Alagawany M., Abd El-Hack M.E. (eds). Bentham Science Publishers Pte. Ltd. Singapore. Search in Google Scholar

Fernández-Rubio C., Ordóñez C., Abad-González J., Garcia-Gallego A., Honrubia M.P., Mallo J.J., Balaña-Fouce R. (2009). Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poultry Sci., 88: 943–948. Search in Google Scholar

Greenwood D., Norrby S.R., Whitley R.J. (2004). Antibiotic and chemotherapy: anti-infective agents and their use in therapy. Philadelphia (PA): Churchill Livingstone. Search in Google Scholar

Gu T., Duan M., Liu J., Chen L., Tian Y., Xu W., Zeng T., Lu L. (2022). Effects of tributyrin supplementation on liver fat deposition, lipid levels and lipid metabolism-related gene expression in broiler chickens. Genes (Basel), 13: 2219. Search in Google Scholar

Guilloteau P., Martin L., Eeckhaut V., Ducatelle R., Zabielski R., Van Immerseel F. (2010). From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev., 23: 366–384. Search in Google Scholar

Kaczmarek S.A., Barri A., Hejdysz M., Rutkowski A. (2016). Effect of different doses of coated butyric acid on growth performance and energy utilization in broilers. Poultry Sci., 95: 851–859. Search in Google Scholar

Leeson S., Namkung H., Antongiovanni M., Lee E.H. (2005). Effect of butyric acid on the performance and carcass yield of broiler chickens. Poultry Sci., 84: 1418–1422. Search in Google Scholar

Letlole B.R., Damen E., Jansen van Rensburg C. (2021). The effect of α-monolaurin and butyrate supplementation on broiler performance and gut health in the absence and presence of the antibiotic growth promoter zinc bacitracin. Antibiotics (Basel), 10: 651. Search in Google Scholar

Lin Q., Liu Y., Li L., Huai M., Wang Y., Lv T., Zhao H., Jiang G., Wang X., Liu C., Qiu H., Dai Q. (2022). Effects of a mixture of monoglycerides of butyric-, capric-, and caprylic acid with chlortetracycline on the growth performance, intestine morphology, and cecal microflora of broiler birds. Poultry Sci., 101: 101617. Search in Google Scholar

Liu J.D., Bayir H.O., Cosby D.E., Cox N.A., Williams S.M., Fowler J. (2017 a). Evaluation of encapsulated sodium butyrate on growth performance, energy digestibility, gut development, and Salmonella colonization in broilers. Poultry Sci., 96: 3638–3644. Search in Google Scholar

Liu M., Guo W., Wu, F., Qu Q., Tan Q., Gong W. (2017 b). Dietary supplementation of sodium butyrate may benefit growth performance and intestinal function in juvenile grass carp (Ctenopharyngodon idellus). Aquacult. Res., 48: 4102–4111. Search in Google Scholar

Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 25: 402–408. Search in Google Scholar

Makowski Z., Lipiński K., Mazur-Kuśnirek M. (2022). The effects of sodium butyrate, coated sodium butyrate, and butyric acid glycerides on nutrient digestibility, gastrointestinal function, and fecal microbiota in turkeys. Animals (Basel), 12: 1836. Search in Google Scholar

Melaku M., Zhong R., Han H., Wan F., Yi B., Zhang H. (2021). Butyric and citric acids and their salts in poultry nutrition: effects on gut health and intestinal microbiota. Int. J. Mol. Sci., 22: 10392. Search in Google Scholar

Mohamed A. (2016). Concurrent uses of diclazuril and lincomycin for controlling of severe necrotic enteritis in broiler chicks. Master Thesis, Faculty of Veterinary Medicine, Zagazig University, Zagazug, Egypt. Search in Google Scholar

OIE (2008). Manual of diagnostic tests and vaccines for terrestrial animals. Paris, France, Office international des epizooties. Search in Google Scholar

Panda A.K., Rao S.V.R., Raju M.V.L.N., Sunder G.S. (2009). Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Australas. J. Anim. Sci., 22: 1026–1031. Search in Google Scholar

Pearlin B.V., Muthuvel S., Govidasamy P., Villavan M., Alagawany M., Farag M.R., Dhama K., Marappan G. (2020). Role of acidifiers in livestock nutrition and health: A review. J. Anim. Physiol. Anim Nutr., 104: 558–569. Search in Google Scholar

Peng L., Li Z.R., Green R.S., Holzman I.R., Lin J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr., 139: 1619–1625. Search in Google Scholar

Raza M., Biswas A., Mir N.A., Mandal A.B. (2019). Butyric acid as a promising alternative to antibiotic growth promoters in broiler chicken production. J. Agri. Sci., 157: 55–62. Search in Google Scholar

Richard M.J., Portal B., Meo J., Coudray C., Hadjian A., Favier A. (1992). Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin. Chem., 38: 704–709. Search in Google Scholar

Saleh A. (2013). Effects of fish oil on the production performances, polyunsaturated fatty acids and cholesterol levels of yolk in hens. Emirates J. Food Agri., 25: 605–612. Search in Google Scholar

Saleh A.A., Ebeid T.A. (2019). Feeding sodium selenite and nano-selenium stimulates growth and oxidation resistance in broilers. South Afr. J. Anim. Sci., 49:176–184. Search in Google Scholar

Saleh A.A., Gálik B., Arpášová H., Capcarová M., Kalafová A., Šimko M., Juráček M., Rolinec M., Bíro D., Abudabos A.M. (2017). Synergistic effect of feeding Aspergillus awamori and lactic acid bacteria on performance, egg traits, egg yolk cholesterol and fatty acid profile in laying hens. Ital. J. Anim. Sci., 16: 132–139. Search in Google Scholar

Saleh A.A., El-Far A.H., Abdel-Latif M.A., Emam M.A., Ghanem R., Abd El-Hamid H.S. (2018). Exogenous dietary enzyme formulations improve growth performance of broiler chickens fed a low-energy diet targeting the intestinal nutrient transporter genes. PLoS ONE, 13: e0198085. Search in Google Scholar

Saleh A.A., Kirrella A.A., Abdo S.E., Mousa M.M., Badwi N.A., Ebeid T.A., Nada A.L., Mohamed M.A. (2019). Effects of dietary xylanase and arabinofuranosidase combination on the growth performance, lipid peroxidation, blood constituents, and immune response of broilers fed low-energy diets. Animals, 9: 467. Search in Google Scholar

Saleh A.A., Paray B.A., Dawood M.A. (2020). Olive cake meal and Bacillus licheniformis impacted the growth performance, muscle fatty acid content, and health status of broiler chickens. Animals, 10: 695. Search in Google Scholar

Saleh A.A., Yassin M., El-Naggar K., Alzawqari M.H., Albogami S., Mohamed Soliman M., Shukry M., Farrag F., Kirrella A.A. (2022). Effect of dietary supplementation of humic acid and lincomycin on growth performance, nutrient digestibility, blood biochemistry, and gut morphology in broilers under clostridium infection. J. Appl. Anim. Res., 50: 440–452. Search in Google Scholar

Sun X., McElroy A., Webb K.E., Sefton A.E., Novak C. (2005). Broiler performance and intestinal alterations when fed drug-free diets. Poultry Sci., 84: 1294–1302. Search in Google Scholar

Sunkara L.T., Achanta M., Schreiber N.B., Bommineni Y.R., Dai G., Jiang W., Lamont S., Lillehoj H.S., Beker A., Teeter R.G., Zhang G. (2011). Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One, 6: e27225. Search in Google Scholar

Sunkara L.T., Jiang W., Zhang G. (2012). Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One, 7: e49558. Search in Google Scholar

Yang X., Yin F., Yang Y., Lepp D., Yu H., Ruan Z., Yang C., Yin Y., Hou Y., Leeson S., Gong J. (2018). Dietary butyrate glycerides modulate intestinal microbiota composition and serum metabolites in broilers. Sci. Rep., 8: 4940. Search in Google Scholar

Yin F., Yu H., Lepp D., Shi X., Yang X., Hu J., Leeson S., Yang C., Nie S., Hou Y., Gong J. (2016). Transcriptome analysis reveals regulation of gene expression for lipid catabolism in young broilers by butyrate glycerides. PLoS One, 11: e0160751. Search in Google Scholar

Zhang W.H., Jiang Y., Zhu Q.F., Gao F., Dai S.F., Chen J., Zhou G.H. (2011). Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Brit. Poult. Sci., 52: 292–301. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine