Cite

Amunjela J.N., Tucker S.J. (2017). POPDC1 is suppressed in human breast cancer tissues and is negatively regulated by EGFR in breast cancer cell lines. Cancer Lett., 406: 81–92. Search in Google Scholar

Amunjela J.N., Swan A.H., Brand T. (2019). The role of the popeye domain containing gene family in organ homeostasis. Cells, 8: 1594. Search in Google Scholar

Cheng Z., Guo J., Chen L., Luo N., Yang W., Qu X. (2016). Knockdown of EHF inhibited the proliferation, invasion and tumorigenesis of ovarian cancer cells. Mol. Carcinog., 55: 1048–1059. Search in Google Scholar

Cochrane C.A. (1997). Models in vivo of wound healing in the horse and the role of growth factors. Vet. Dermatol., 8: 259–272. Search in Google Scholar

Cui R., Cao G., Bai H., Zhang Z. (2019). LPAR1 regulates the development of intratumoral heterogeneity in ovarian serous cyst-adenocarcinoma by activating the PI3K/AKT signaling pathway. Cancer Cell Int., 19: 201. Search in Google Scholar

Dutta S., Wang F.Q., Wu H.S., Mukherjee T.J., Fishman D.A. (2011). The NF-κB pathway mediates lysophosphatidic acid (LPA)-induced VEGF signaling and cell invasion in epithelial ovarian cancer (EOC). Gynecol. Oncol., 123: 129–137. Search in Google Scholar

Farré D., Roset R., Huerta M., Adsuara J.E., Roselló L., Albà M.M., Messeguer X. (2003). Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res., 31: 3651. Search in Google Scholar

Feng Q., Hawes S.E., Stern J.E., Wiens L., Lu H., Zhao M.D., Jordan C.D., Kiviat N.B., Vesselle H. (2008). DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol, Biomarkers Prev., 17: 645–654. Search in Google Scholar

Funiciello B., Roccabianca P. (2020). Equine Sarcoid. In: Equine Science, Rutland C., Rizvanov A. (eds). IntechOpen. Search in Google Scholar

Geraldo L.H.M., Spohr T.C.L.S., Amaral R.F.D., Fonseca A.C.C.D., Garcia C., Mendes F.A., Freitas C., dosSantos M.F., Lima F.R.S. (2021). Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct. Target Ther., 6: 45. Search in Google Scholar

Hainisch E.K., Jindra C., Reicher P., Miglinci L., Brodesser D.M., Brandt S. (2022). Bovine papillomavirus type 1 or 2 virion-infected primary fibroblasts constitute a near-natural equine sarcoid model. Viruses, 14: 2658. Search in Google Scholar

Hanson R.R. (2008). Complications of equine wound management and dermatologic surgery. Vet. Clin. North Am. Equine Pract., 24: 663–696. Search in Google Scholar

Huang R., Li L., Wang Z., Shen K. (2022). A systemic pan-cancer analysis of MPZL3 as a potential prognostic biomarker and its correlation with immune infiltration and drug sensitivity in breast cancer. Front. Oncol., 12: 3839. Search in Google Scholar

Jindra C., Hainisch E.K., Brandt S. (2023). Immunotherapy of equine sarcoids − from early approaches to innovative vaccines. Vaccines (Basel), 11: 769. Search in Google Scholar

Jjingo D., Conley A.B., Yi S. V., Lunyak V. V., King Jordan I. (2012). On the presence and role of human gene-body DNA methylation. Oncotarget, 3: 462. Search in Google Scholar

Kaleibar M.T., Eshghi D., Helan J.A. (2015). A survey on the status of equine skin tumors and associated epidemiological factors in Iran. Comp. Clin. Path., 24: 1407–1415. Search in Google Scholar

Kim M., Jang H.R., Haam K., Kang T.W., Kim J.H., Kim S.Y., Noh S.M., Song K.S., Cho J.S., Jeong H.Y., Kim J.C., Yoo H.S., Kim Y.S. (2010). Frequent silencing of popeye domain-containing genes, BVES and POPDC3, is associated with promoter hyper-methylation in gastric cancer. Carcinogenesis, 31: 1685–1693. Search in Google Scholar

Knottenbelt D.C. (2005). A suggested clinical classification for the equine sarcoid. Clin. Tech. Equine Pract., 4: 278–295. Search in Google Scholar

Leakey T.I., Zielinski J., Siegfried R.N., Siegel E.R., Fan C.Y., Cooney C.A. (2008). A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms. Nucleic Acids Res., 36: e64. Search in Google Scholar

Lian B.S.X., Kawasaki T., Kano N., Ori D., Ikegawa M., Isotani A., Kawai T. (2022). Regulation of Il6 expression by single CpG methylation in downstream of Il6 transcription initiation site. iScience, 25: 104118. Search in Google Scholar

Lin Y.H., Lin Y.C., Chen C.C. (2021). Lysophosphatidic acid receptor antagonists and cancer: The current trends, clinical implications, and trials. Cells, 10: 1629. Search in Google Scholar

Mallona I., Díez-Villanueva A., Peinado M.A. (2014). Methylation plotter: A web tool for dynamic visualization of DNA methylation data. Source Code. Biol. Med., 9: 1–5. Search in Google Scholar

Messeguer X., Escudero R., Farré D., Núñez O., Martínez J., Albà M.M. (2002). PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics, 18: 333–334. Search in Google Scholar

Nasir L., Campo M.S. (2008). Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet. Dermatol., 19: 243–254. Search in Google Scholar

Nishiyama A., Nakanishi M. (2021). Navigating the DNA methylation landscape of cancer. Trends. Genet., 37: 1012–1027. Search in Google Scholar

Okano M., Bell D.W., Haber D.A., Li E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99: 247–257. Search in Google Scholar

Park S.Y., Jeong K.J., Panupinthu N., Yu S., Lee J., Han J.W., Kim J.M., Lee J.S., Kang J., Park C.G., Mills G.B., Lee H.Y. (2011). Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene, 30: 1351–1359. Search in Google Scholar

Pawlina-Tyszko K., Gurgul A., Szmatoła T., Ropka-Molik K., Semik-Gurgul E., Klukowska-Rötzler J., Koch C., Mählmann K., Bugno-Poniewierska M. (2017). Genomic landscape of copy number variation and copy neutral loss of heterozygosity events in equine sarcoids reveals increased instability of the sarcoid genome. Biochimie, 140: 122–132. Search in Google Scholar

Semik E., Gurgul A., Ząbek T.Z., Ropka-Molik K., Koch C., Mähl-mann K., Bugno-Poniewierska M. (2017). Transcriptome analysis of equine sarcoids. Vet. Comp. Oncol., 15: 1370–1381. Search in Google Scholar

Semik-Gurgul E. (2021). Molecular approaches to equine sarcoids. Equine Vet. J., 53: 221–230. Search in Google Scholar

Semik-Gurgul E., Szmatoła T., Gurgul A., Pawlina-Tyszko K., Gałuszka A., Pędziwiatr R., Witkowski M., Ząbek T. (2023). Methylome and transcriptome data integration reveals aberrantly regulated genes in equine sarcoids. Biochimie, 213: 100–113. Search in Google Scholar

Shi J., Jiang D., Yang S., Zhang X., Wang J., Liu Y., Sun Y., Lu Y., Yang K. (2020). LPAR1, correlated with immune infiltrates, is a potential prognostic biomarker in prostate cancer. Front. Oncol., 10: 846. Search in Google Scholar

Sobiak B., Leśniak W. (2019). The effect of single CpG demethylation on the pattern of DNA-protein binding. Int. J. Mol. Sci., 20: 914. Search in Google Scholar

Tsujiuchi T., Okabe K., Fukushima N. (2011). Genetic and epigenetic alterations of lysophosphatidic acid receptor genes in rodent tumors by experimental models. J. Toxicol. Pathol., 24: 143. Search in Google Scholar

Vohra M., Adhikari P., Souza S.C.D., Nagri S.K., Umakanth S., Satyamoorthy K., Rai P.S. (2020 a). CpG-SNP site methylation regulates allele-specific expression of MTHFD1 gene in type 2 diabetes. Lab. Invest., 100: 1090–1101. Search in Google Scholar

Vohra M., Sharma A.R., Prabhu B.N., Rai P.S. (2020 b). SNPs in sites for DNA methylation, transcription factor binding, and miRNA targets leading to allele-specific gene expression and contributing to complex disease risk: A systematic review. Pub. Health Genom., 23: 155–170. Search in Google Scholar

Wang L., Ai M., Nie M., Zhao Li, Deng G., Hu S., Han Y., Zeng W., Wang Y., Yang M., Wang S. (2020). EHF promotes colorectal carcinoma progression by activating TGF-β1 transcription and canonical TGF-β signaling. Cancer Sci., 111: 2310–2324. Search in Google Scholar

Wang Q., Xiong F., Wu G., Liu W., Chen J., Wang B., Chen Y. (2022). Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin. Epigenet., 14: 1–14. Search in Google Scholar

Yang X., Han H., DeCarvalho D.D., Lay F.D., Jones P.A., Liang G. (2014). Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell, 26: 577–590. Search in Google Scholar

Yegnasubramanian S., Haffner M.C., Zhang Y., Gurel B., Cornish T.C., Wu Z., Irizarry R.A., Morgan J., Hicks J., DeWeese T.L., Isaacs W.B., Bova G.S., De Marzo A.M., Nelson W.G. (2008). DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res., 68: 8954–8967. Search in Google Scholar

Yuan Z.Q., Gobeil P.A.M., Campo M.S., Nasir L. (2010). Equine sarcoid fibroblasts over-express matrix metalloproteinases and are invasive. Virology, 396: 143–151. Search in Google Scholar

Yung Y.C., Stoddard N.C., Chun J. (2014). Thematic review series: lysophospholipids and their receptors: LPA receptor signaling: pharmacology, physiology, and pathophysiology. J. Lipid. Res., 55: 1192. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine