Acceso abierto

Hermetia illucens as a Source of Antimicrobial Peptides – A Review of in vitro and in vivo Studies


Cite

Antimicrobial Peptide Database https://aps.unmc.edu/ Search in Google Scholar

Biasato I., Ferrocino I., Dabbou S., Evangelista R., Gai F., Gasco L., Cocolin L., Capucchio M. T., Schiavone A. (2020). Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. J. Anim. Sci. Biotechnol., 11: 1–12. Search in Google Scholar

Bovera F., Loponte R., Pero M. E., Cutrignelli M. I., Calabrò S., Musco N., Vassalotti G., Panettieri V., Pietro Lombardi P., Piccolo G., Di Meo C., Siddi G., Fliegerova K., Moniello G. (2018). Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci., 120: 86–93. Search in Google Scholar

Bulet P., Stocklin R. (2005). Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett., 12: 3–11. Search in Google Scholar

Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. (1999). Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol., 23: 329–344. Search in Google Scholar

Buonocore F., Fausto A.M., Della Pelle G., Roncevic T., Gerdol M., Picchietti S. (2021). Attacins: A promising class of insect antimicrobial peptides. Antibiotics, 10: 212. Search in Google Scholar

Carlsson A., Nyström T., de Cock H., Bennich H. (1998). Attacin − an insect immune protein-binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology, 144: 2179–2188. Search in Google Scholar

Choi W.H., Yu, J.H., Chu J.P., Chu K.B. (2012). Antibacterial effect of extracts of Hermetia illucens (Diptera: Stratiomyidae) larvae against gram-negative bacteria. Entomol. Res., 42: 219–226. Search in Google Scholar

Ebenhan T., Gheysens O., Kruger H.G., Zeevaart J.R., Sathekge M.M. (2014). Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed. Res. Int., 2014. Search in Google Scholar

Elhag O., Zho D., Song Q., Soomro A.A., Cai M., Zheng L., Yu Z., Zhang J. (2017). Screening, expression, purification, and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.). PLoS One, 12: e0169582. Search in Google Scholar

Ganz T., Lehrer R.I. (1995). Defensins. Pharmacol. Therapeut., 66: 191–205. Search in Google Scholar

Grela E.R., Skomiał J. (2020). Zalecenia żywieniowe i wartość pokarmowa pasz dla świń (in Polish). The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland. Search in Google Scholar

Griminger P., Scanes C.G. (1986). Protein metabolism. In: Avian Physiology, Sturkie, P.D. (ed.). Springer, New York, NY, pp. 326–344. Search in Google Scholar

Gul S.T., Alsayeqh A.F. (2022). Probiotics as an alternative approach to antibiotics for safe poultry meat production. Pak. Vet. J., 42: 285–291. Search in Google Scholar

Hoffmann J.A., Hetru C. (1992). Insect defensins: inducible antibacterial peptides. Immunol. Today, 13: 411–415. Search in Google Scholar

Hong Y., Zhou J., Yuan M.M., Dong H., Cheng G.Q., Wang Y.J., Xia J.Y., Zhang L. (2020). Dietary supplementation with housefly (Musca domestica) maggot meal in growing beagles: hematology, serum biochemistry, immune responses, and oxidative damage. Ann. Anim. Sci., 20: 1351–1364. Search in Google Scholar

Józefiak A., Engberg R.M. (2017). Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed Sci., 26: 87–99. Search in Google Scholar

Józefiak A., Kierończyk B., Rawski M., Mazurkiewicz J., Benzertiha A., Gobbi P., Nogales-Mérida S., Świątkiewicz S., Józefiak D. (2018). Full-fat insect meals as feed additive − the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci., 27: 131–139. Search in Google Scholar

Kierończyk B., Rawski M., Mikołajczak Z., Leciejewska N., Józefiak D. (2022). Hermetia illucens fat affects the gastrointestinal tract selected microbial populations, their activity, and the immune status of broiler chickens. Ann. Anim. Sci., 22: 663–675. Search in Google Scholar

Lai Y., Gallo R.L. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 30: 131–141. Search in Google Scholar

Langen G., Imani J., Altincicek B., Kieseritzky G., Kogel K.H., Vilcinskas A. (2006). Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco, Biol. Chem., 387: 549–557. Search in Google Scholar

Lata S., Sharma B.K., Raghava G.P. (2007). Analysis and prediction of antibacterial peptides. BMC Bioinform., 8: 1–10. Search in Google Scholar

Lee K.S., Yun E.Y., Goo T.W. (2020). Antimicrobial activity of an extract of Hermetia illucens larvae immunized with Lactobacillus casei against Salmonella species. Insects, 11: 704. Search in Google Scholar

Li B., Yang N., Wang X., Hao Y., Mao R., Li Z., Wang Z., Teng D., Wang J. (2020). An enhanced variant designed from DLP4 cationic peptide against Staphylococcus aureus CVCC 546. Front Microbiol., 11:1057. Search in Google Scholar

Li Z., Mao R., Teng D., Hao Y., Chen H., Wang X., Wang X., Jang N., Wang J. (2017). Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Sci. Rep., 7: 1–16. Search in Google Scholar

Looft T., Johnson T.A., Allen H.K., Bayles D.O., Alt D.P., Stedtfeld R.D., Sul W.J., Stedtfeld T.M., Chai B., Cole J.R., Hashsham S.A., Tiedje J.M., Stanton, T.B. (2012). In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. U. S. A., 109: 1691–1696. Search in Google Scholar

Loponte R., Nizza S., Bovera F., De Riu N., Fliegerova K., Lombardi P., Vassalotti G., Vincenzo Mastellone V., Moniello G. (2017). Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci., 115: 183–188. Search in Google Scholar

Makwana P., Rahul K., Ito K., Subhadra B. (2023). Diversity of antimicrobial peptides in silkworm. Life, 13: 1161. Search in Google Scholar

Malik F., Nawaz M., Anjum A.A., Firyal S., Shahid M.A., Irfan S., Ahmed F., Bhatti A.A. (2022). Molecular characterization of antibiotic resistance in poultry gut origin enterococci and horizontal gene transfer of antibiotic resistance to Staphylococcus aureus. Pak. Vet. J., 42: 383–389. Search in Google Scholar

Marono S., Loponte R., Lombardi P., Vassalotti G., Pero M.E., Russ F., Gasco L., Parisi G., Piccolo G., Nizza S., Meo C. Di, Attia Y.A., Bovera F. (2017). Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poultry Sci., 96: 1783–1790. Search in Google Scholar

Matsue M., Mori Y., Nagase S., Sugiyama Y., Hirano R., Ogai K., Ogura K., Kurihara S., Okamoto S. (2019). Measuring the antimicrobial activity of lauric acid against various bacteria in human gut microbiota using a new method. Cell Transplant., 28: 1528–1541. Search in Google Scholar

Moore A.J., Devine D.A., Bibby M.C. (1994). Preliminary experimental anticancer activity of cecropins. Peptide Res., 7: 265–269. Search in Google Scholar

Moretta A., Salvia R., Scieuzo C., Di Somma A., Vogel H., Pucci P., Sgambato A., Wolff M., Falabella P. (2020). A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (HI) Hermetia illucens (Diptera: Stratiomyidae). Sci. Rep., 10: 1–14. Search in Google Scholar

Müller A., Wolf D., Gutzeit H.O. (2017). The black soldier fly, Hermetia illucens − a promising source for sustainable production of proteins, lipids and bioactive substances. Z. Naturforsch. C J. Biosci., 72: 351–363. Search in Google Scholar

Mylonakis E., Podsiadlowski L., Muhammed M., Vilcinskas A. (2016). Diversity, evolution and medical applications of insect antimicrobial peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci., 371: 20150290. Search in Google Scholar

Oonincx D.G.A.B., van Ltterbeeck J., Heetkamp M.J.W., van den Brand H., van Loon J.J.A., van Huis A. (2011). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. Plos ONE, 5: e14445. Search in Google Scholar

Park S.I., Yoe S.M. (2017 a). A novel cecropin-like peptide from black soldier fly, Hermetia illucens: Isolation, structural and functional characterization. Entomol. Res., 47: 115–124. Search in Google Scholar

Park S.I., Yoe S.M. (2017 b). Defensin-like peptide3 from black soldier fly: Identification, characterization, and key amino acids for anti-Gram-negative bacteria. Entomol. Res., 47: 41–47. Search in Google Scholar

Park S.I., Kim J.W., Yoe S.M. (2015). Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev. Comp. Immunol., 52: 98–106. Search in Google Scholar

Reátegui J., Barriga X., Obando A., Moscoso G., Manrique P., Salazar I. (2020). Hermetia illucens larva (Diptera: Stratiomyidae) meal as a protein ingredient for partial replacement of soybean meal in the feed of Cavia porcellus (guinea pig): effect on the consumption, weight gain, and feed conversion. Sci. Agropecu., 11: 513–519. Search in Google Scholar

Saeed S.I., Mergani A., Aklilu E., Kamaruzzaman N.F. (2022). Antimicrobial peptides: bringing solution to the rising threats of antimicrobial resistance in livestock. Front. Vet. Sci., 9: 319. Search in Google Scholar

Scieuzo C., Giglio F., Rinaldi R., Lekka M.E., Cozzolino F., Monaco V., Monti M., Salvia R., Falabella P. (2023). In vitro evaluation of the antibacterial activity of the peptide fractions extracted from the hemolymph of Hermetia illucens (Diptera: Stratiomyidae). Insects, 14: 464. Search in Google Scholar

Shin H.S., Park S.I. (2019). Novel attacin from Hermetia illucens: cDNA cloning, characterization, and antibacterial properties. Prep. Biochem. Biotechnol., 49: 279–285. Search in Google Scholar

Spranghers T., Michiels J., Vrancx J., Ovyn A., Eeckhout M., De Clercq P., De Smet S. (2018). Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol., 235: 33–42. Search in Google Scholar

Sultana A., Luo H., Ramakrishna S. (2021). Harvesting of antimicrobial peptides from insect (Hermetia illucens) and its applications in the food packaging. Appl. Sci., 11: 6991. Search in Google Scholar

Szczepanik K., Furgał-Dierżuk I., Gala Ł., Świątkiewicz M. (2023). Effects of Hermetia illucens larvae meal and astaxanthin as feed additives on health and production indices in weaned pigs. Animals, 13: 163. Search in Google Scholar

Tang Q., Xu E., Wang Z., Xiao M., Cao S., Hu S., Wu Q., Xiong Y., Jiang Z., Wang F., Yang G., Wang L., Yi H. (2022). Dietary Hermetia illucens larvae meal improves growth performance and intestinal barrier function of weaned pigs under the environment of enterotoxigenic Escherichia coli K88. Front. Nutr., 8: 812011. Search in Google Scholar

Tonk M., Knorr E., Cabezas-Cruz A., Valdé J.J., Kollewe C., Vilcinskas A. (2015). Tribolium castaneum defensins are primarily active against Gram-positive bacteria. J. Invertebr. Pathol., 132: 208–215. Search in Google Scholar

Van Moll L., De Smet J., Paas A., Tegtmeier D., Vilcinskas A., Cos P., Van Campenhout L. (2022). In vitro evaluation of antimicrobial peptides from the black soldier fly (Hermetia illucens) against a selection of human pathogens. Microbiol. Spectr., 10: e01664–21. Search in Google Scholar

Vogel H., Müller A., Heckel D.G., Gutzeit H., Vilcinskas A. (2018). Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev. Comp. Immunol., 78: 141–148. Search in Google Scholar

Wang S., Zeng X., Yang Q., Qiao S. (2016). Antimicrobial peptides as potential alternatives to antibiotics in the food animal industry. Int. J. Mol. Sci., 17: 603. Search in Google Scholar

Wang Y.S., Shelomi M. (2017). Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods, 6: 91. Search in Google Scholar

Waśko A., Bulak P., Polak-Berecka M., Nowak K., Polakowski C., Bieganowski A. (2016). The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int. J. Biol. Macromol., 92: 316–320. Search in Google Scholar

Wu Q., Patočka J., Kuča K. (2018). Insect antimicrobial peptides, a mini review. Toxins, 10: 461. Search in Google Scholar

Xia J., Ge C., Yao H. (2021). Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals, 11: 1937. Search in Google Scholar

Xu J., Luo X., Fang G., Zhan S., Wu J., Wang D., Huang Y. (2020). Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol., 127: 103487. Search in Google Scholar

Yeaman M.R., Yount N.Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 55: 27–55. Search in Google Scholar

Yu M., Li Z., Chen W., Rong T., Wang G., Ma X. (2019). Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol., 10: 1–16. Search in Google Scholar

Zasloff M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. U.S.A., 84: 5449–5453. Search in Google Scholar

Zasloff M., Martin B., Chen H.C. (1988). Antimicrobial activity of synthetic magainin peptides and several analogues. Proc. Natl. Acad. Sci. U.S.A., 85: 910–913. Search in Google Scholar

Zdybicka-Barabas A., Bulak P., Polakowski C., Bieganowski A., Waśko A., Cytryńska M. (2017). Immune response in the larvae of the black soldier fly Hermetia illucens. Invertebr. Surviv. J., 14: 9–17. Search in Google Scholar

Zhang J., Li J., Peng Y., Gao X., Song Q., Zhang H., Elhag O., Cai M., Zheng L., Yu Z., Zhang J. (2022). Structural and functional characterizations and heterogenous expression of the antimicrobial peptides, Hidefensins, from black soldier fly, Hermetia illucens (L.). Protein Expr. Purif., 192: 106032. Search in Google Scholar

Zhang L.J., Gallo R.L. (2016). Antimicrobial peptides. Curr. Biol., 26: R14–R19. Search in Google Scholar

Zhang Q.Y., Yan Z.B., Meng Y.M., Hong X.Y., Shao G., Ma J.J., Cheng X.R., Liu J., Kang J., Fu C.Y. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil. Med. Res., 8: 1–25. Search in Google Scholar

Żyłowska M., Wyszyńska A., Jagusztyn-Krynicka E.K. (2011). Antimicrobial peptides – defensins (in Polish). Postępy Mikrobiol., 50: 223–234. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine