Acceso abierto

Assessment of Initial Investment Strategies for Different Farm-Scale Scenarios with Economic Cost Analyses in Offshore Salmon Farming

   | 23 ene 2024

Cite

Arru B., Furesi R., Gasco L., Madau F.A., Pulina P. (2019). The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability, 11: 1697. Search in Google Scholar

Asche F., Roll K.H., Sandvold H.N., Sørvig A., Zhang D. (2013). Salmon aquaculture: Larger companies and increased production. Aquac. Econ. Manag., 17: 322–339. Search in Google Scholar

Bloecher N., Olsen Y., Guenther J. (2013). Variability of biofouling communities on fish cage nets: A 1-year field study at a Norwegian salmon farm. Aquaculture, 416–417: 302–309. Search in Google Scholar

Bozoglu M., Ceyhan V. (2009). Cost and profitability analysis for trout and sea bass production in the Black Sea. Turkey. J. Anim. Vet. Adv., 8: 217–222. Search in Google Scholar

Buyukates Y., Kesbiç O., Yigit M., Yilmaz S., Ergün S., Bulut M., Ozalp B. (2022). Temporal variations in hematological, immuno-logical and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss) acclimated to high-saline water in the northern Aegean sea. Ann. Anim. Sci., 23: 97–106. Search in Google Scholar

Cacho O.J. (1997). Systems modelling and bioeconomic modelling in aquaculture. Aquac. Econ. Manag., 1: 45–64. Search in Google Scholar

CRS (2021). Global economic effects of COVID-19. Congressional Research Service Report, R46270 – Version 81, November 10, 2021. https://crsreports.congress.gov R46270 Search in Google Scholar

Di Trapani A.M., Filippo S., Riccardo T., Salvatore T. (2014). Economic comparison between offshore and inshore aquaculture production systems of European sea bass in Italy. Aquaculture, 434: 334–339. Search in Google Scholar

Edwards P., Little D.C., Yakupitiyage A. (1997). A comparison of traditional and modified inland artisanal aquaculture systems. Aquac. Res., 28: 777–787. Search in Google Scholar

FAO (2022 a). The state of world fisheries and aquaculture 2022: Towards blue transformation. Rome, FAO. DOI: 10.4060/cc0461en. Search in Google Scholar

FAO (2022 b). Global aquaculture production. FAO Fisheries and Aquaculture Statistics. Online Query Panel. https://www.fao.org/fishery/statistics-query/en/aquaculture. Search in Google Scholar

FAO (2022 c). Global fish trade – by partner country value (2019–2020). FAO Fisheries and Aquaculture Statistics. Online Query Panel. https://www.fao.org/fishery/statistics-query/en/trade_partners/trade_partners_value. Search in Google Scholar

Fernández-Polanco J., Llorente I. (2019). Price transmission and market integration: Vertical and horizontal price linkages for gilthead seabream (Sparus aurata) in the Spanish market. Aquaculture, 506: 470–474. Search in Google Scholar

Fernández-Sánchez J.L., Llorente G.I., Luna M. (2020). Technical efficiency of sea bass and sea bream farming in the Mediterranean Sea by European firms: A stochastic production frontier (SPF) approach. Aquac. Econ. Manag., 24: 526–539. Search in Google Scholar

Fernández-Sánchez J.L., Llorente G.I., Basurco B., Aguilera C. (2022). Assessing the economic impact of key operational factors on grow-out farms producing European sea bass under different scenarios of production, Aquac. Econ. Manag., 26: 232–250. Search in Google Scholar

Ferreira J.G., Saurel C., Ferreira J.M. (2012). Cultivation of gilthead bream in monoculture and integrated multi-trophic aquaculture. Analysis of production and environmental effects by means of the FARM model. Aquaculture, 358–359: 23–34. Search in Google Scholar

Gasca-Leyva E., León CJ., Hernández JM., Vergara J.M. (2002). Bio-economic analysis of production location of sea bream (Sparus aurata) cultivation. Aquaculture, 213: 219–232. Search in Google Scholar

Grillone G., Baiamonte G., D’Asaro F. (2014). Empirical determination of the average annual runoff coefficient in the Mediterranean area. Am. J. Appl. Sci., 11: 89–95. Search in Google Scholar

Hadelan L., Par V., Njavro M., Lovrinov M. (2012). Real option approach to economic analysis of European sea bass (Dicetrarchus labrax) farming in Croatia. Agric. Conspec. Sci., 77: 161–165. Search in Google Scholar

Holmer M. (2010). Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquacult. Environ. Interact., 1: 57–70. Search in Google Scholar

Kankainen M., Mikalsen R. (2014). Offshore fish farm investment and competitiveness in the Baltic Sea. AQUABEST, Reports of Aqua-best projects 2/2014. http://www.aquabestproject.eu/reports.aspx Search in Google Scholar

Klebert P., Lader P., Gansel L., Oppedal F. (2013). Hydrodynamic interactions on net panel and aquaculture fish cages: a review. Ocean Eng., 58: 260–274. Search in Google Scholar

Llorente I., Fernández-Polanco J., Baraibar-Diez E., Odriozola M.D., Bjørndal T., Asche F., Guillen J., Avdelas L., Nielsen R., Cozzolino M., Luna M., Fernández-Sánchez J.L., Luna L., Aguilera C., Basurco B. (2020). Assessment of the economic performance of the seabream and sea bass aquaculture industry in the European Union. Mar. Pol., 117: 103876. Search in Google Scholar

MGM (2022). Sea water temperature, Black Sea (Deniz Suyu Sıcaklıkları – Meteoroloji, Karadeniz). Çevre Şehircilik ve İklim Değişikliği Bakanlığı, Meteoroloji Genel Müdürlüğü (MGM). Retrieved November 5, 2022, from https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Karadeniz-Deniz-Suyu-Sicakligi-Analizi-2021.pdf Search in Google Scholar

Mitra S., Khan M.A., Nielsen R. (2019). Credit constraints and aqua-culture productivity. Aquac. Econ. Manag., 23: 410–427. Search in Google Scholar

Pomeroy R., Bravo-Ureta B.E., Solís D., Johnston R.J. (2008). Bio-economic modelling and salmon aquaculture: an overview of the literature. Int. J. Environ. Pollut., 33: 485–500. Search in Google Scholar

Stankovicì D., Crivelli A.J., Snoj A. (2015). Rainbow trout in Europe: introduction, naturalization, and impacts. Rev. Fish. Sci. Aquac.,23: 39–71. Search in Google Scholar

TMAF (2020). Statement about “Naming Trouts as Salmon (Alabalıkların Somon olarak Adlandırılması Hk)” (Report No. 07.04.2020/40317327-010.07.01-E.1063921). General Directorate of Food and Control, Turkish Ministry of Agriculture and Forestry (TMAF). Search in Google Scholar

Torrissen O., Jones S., Asche F., Guttormsen A., Skilbrei O.T., Nilsen F., Horsberg T.E., Jackson D. (2013). Salmon lice – impact on wild salmonids and salmon aquaculture. J. Fish Dis., 36: 171–194. Search in Google Scholar

Turker A., Ergün S., Yigit M. (2004). Changes in blood ion levels and mortality rates in different sized rainbow trout (Oncorhynchus mykiss) following direct transfer to sea water. Isr. J. Aquac., 56: 51–58. Search in Google Scholar

Weygandt J.J., Kieso D.E., Kimmel P.D. (1999). Managerial accounting tools for business decision making. John Wiley & Sons. Search in Google Scholar

Yigit M. (1996). Gökkuşağı alabalıklarının (Oncorhynchus mykiss W.1792) denizsuyu ve tatlısudaki büyüme farklılıklarının karşılaştırılması. M.Sc. Thesis (in Turkish). Ondokuz Mayis University, Faculty of Fisheries, School of Natural and Applied Sciences, Samsun-Türkiye. Search in Google Scholar

Yigit M., Aral M.O. (1999). A comparison of the growth differences of Rainbow trout Oncorhynchus mykiss W 1792 in freshwater and seawater, the Black Sea. Turkish J. Vet. Anim. Sci., 23: 53–59. Search in Google Scholar

Yoğurtçuoğlu B., Bucak T., Ekmekçi F.G., Kaya C., Tarkan A.S. (2021). Mapping the establishment and invasiveness potential of rainbow trout (Onchorhynchus mykiss) in Turkey: with special emphasis on the conservation of native salmonids. Front. Ecol. Evol., 8: 599881. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine