Detalles de la revista
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año
Acceso abierto

Antimicrobial impacts of zinc oxide nanoparticles on shiga toxin-producing Escherichia coli (serotype O26)

Publicado en línea: 28 Nov 2022
Volumen & Edición: AHEAD OF PRINT
Páginas: -
Recibido: 24 Oct 2022
Aceptado: 15 Nov 2022
Detalles de la revista
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año

Abd El-Hack M.E., Alagawany M., Arif M., Chaudhry M.T., Emam M., Patra A. (2017b). Organic or inorganic zinc in poultry nutrition: a review. World’s Poult. Sci. J., 73: 904–915.10.1017/S0043933917000769 Search in Google Scholar

Abd El-Hack M.E., Alagawany M., Farag M.R., Arif M., Emam M., Dhama K., Sayab M. (2017a). Nutritional and pharmaceutical applications of nanotechnology: Trends and advances. Inter. J. Pharmacol. 13: 340–350.10.3923/ijp.2017.340.350 Search in Google Scholar

Abd El-Hack M.E., Alaidaroos B.A., Farsi R.M., Abou-Kassem D.E., El-Saadony M.T., Saad A.M., Ashour E.A. (2021b). Impacts of supplementing broiler diets with biological curcumin, zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals, 11: 1878.10.3390/ani11071878830029434202621 Search in Google Scholar

Abd El-Hack M.E., El-Saadony M.T., Saad A.M., Salem H.M., Ashry N.M., Ghanima M.M.A., El-Tarabily K.A. (2021a). Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poult. Sci., 101584.10.1016/j.psj.2021.101584869536234942519 Search in Google Scholar

Ahmed B., Solanki B., Zaidi A., Khan M.S., Musarrat J. (2019). Bacterial toxicity of biomimetic green zinc oxide nano antibiotic: insights into ZnO NP uptake and nano colloid–bacteria interface. Toxicol. Res., 8: 246. Search in Google Scholar

Akhtar M.J., Ahamed M., Kumar S., Khan M.M., Ahmad J., Alrokayan S.A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomedicine., 7: 845–857. Search in Google Scholar

Alagawany M., Qattan S.Y., Attia Y.A., El-Saadony M.T., Elnesr S.S., Mahmoud M.A., Abd El-Hack M.E., Reda F.M. (2021). Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes. Animals, 11: 3027. Search in Google Scholar

Alam M. (2021). Photocatalytic activity of biogenic zinc oxide nanoparticles: In vitro antimicrobial, biocompatibility, and molecular docking studies. Nanotechnol. Rev., 10: 1079–1091. Search in Google Scholar

Alekish M., Ismail Z.B., Albiss B., Nawasrah S. (2018). In vitro antibacterial effects of zinc oxide nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Escherichia coli: An alternative approach for antibacterial therapy of mastitis in sheep. Vet. World, 11: 1428–1432. Search in Google Scholar

Al-Gabri N.A., Saghir S.A., Al-Hashedi S.A., El-Far A.H., Khafaga A.F., Swelum A. A., El-Tarabily K.A. (2021). Therapeutic potential of thymoquinone and its nanoformulations in pulmonary injury: a comprehensive review. Inter. J. Nanomed., 16: 5117. Search in Google Scholar

Amaro F., Morón Á., Díaz S., Martín-González A., Gutiérrez J.C. (2021). Metallic Nanoparticles—Friends or Foes in the Battle against Antibiotic-Resistant Bacteria?. Microorganisms, 9: 364. https://doi.org/10.3390/microorganisms9020364.10.3390/microorganisms9020364791777133673231 Search in Google Scholar

Anjum S., Hashim M., Malik S.A., Khan M., Lorenzo J.M., Abbasi B.H., Hano C. (2021). Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers, 13: 4570. Search in Google Scholar

Ashour E.A., Abd El-Hack M.E., Shafi M.E., Alghamdi W.Y., Taha A.E., Swelum A.A., El-Saadony M.T. (2020). Impacts of green coffee powder supplementation on growth performance, carcass characteristics, blood indices, meat quality and gut microbial load in broilers. Agriculture, 10: 457. Search in Google Scholar

Awwad A.M., Amer M.W., Salem N.M., Abdeen A.O. (2020). Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem. Inter., 6: 151–159. Search in Google Scholar

Babele P.K. (2019). Zinc oxide nanoparticles impose metabolic toxicity by de-regulating proteome and metabolome in Saccharomyces cerevisiae. Toxicol. Rep., 6: 64–73. Search in Google Scholar

Bascheraa M., Cernelaa N., Stevensa M.J.A., Liljander A., Jores J., Cormand V.M., Nüesch-Inderbinena M., Stephana R. (2019). Shiga toxin-producing Escherichia coli (STEC) isolated from fecal samples of African dromedary camels. One Health, 7: 100087. Search in Google Scholar

Bratz K., Golz G., Riedel C., Janczyk P., Nockler K., Alter T. (2013). Inhibitory effect of high-dosage zinc oxide dietary supplementation on Campylobacter coli excretion in weaned piglets. J. Appl. Microbiol., 115: 1194–1202. Search in Google Scholar

Brayner R., Ferrari-lliou R., Brivois N., Djediat S., Benedetti M.F., Fievet F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett., 6: 866–870. Search in Google Scholar

Cergole-Novella M.C., Pignatari A.C.C., Castanheira M., Guth B.E.C. (2011). Molecular typing of antimicrobial-resistant Shiga-toxin-producing Escherichia coli strains (STEC) in Brazil. Res. Microbiol., 162: 117–123. Search in Google Scholar

Chen M.L, Hao Z., Tian Y., Zhang Q.Y., Gao P.J., Jin J.L. (2013). Different effects of six antibiotics and ten traditional chinese medicines on Shiga toxin expression by Escherichia coli O157:H7. Evidence-Based Complemen. Alter. Med., (121407): 8. Search in Google Scholar

CLSI. (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplementM100. Wayne, PA: Clinical and Laboratory Standards Institute. Search in Google Scholar

Crane J.K., Broome J.E., Reddinger R.M., Werth B.B. (2014). Zinc protects against shiga-toxigenic Escherichia coli by acting on host tissues as well as on bacteria. BMC Microbiol., 14: 145. Search in Google Scholar

Crane J.K., Byrd I.W., Boedeker E.C. (2011). Virulence inhibition by zinc in shiga-toxigenic Escherichia coli. Inf. Immun., 79: 1696–1705. Search in Google Scholar

Cui Y., Zhao Y., Tian Y., Zhang W., Lü X., Jiang X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33: 2327–2333. Search in Google Scholar

Day M., Doumith M., Jenkins C., Dallman T.J., Hopkins K.L., Elson R., Woodford N. (2016). Antimicrobial resistance in Shiga toxin-producing Escherichia coli serogroups O157 and O26 isolated from human cases of diarrheal disease in England, 2015. J. Antimicrob. Chemother., 72: 145–152. Search in Google Scholar

Delannoy S., Mariani-Kurkdjian P., Bonacorsi S., Liguori S., Fach P. (2015). Characteristics of emerging human-pathogenic Escherichia coli O26:H11 strains isolated in France between 2010 and 2013 and carrying the stx2d gene only. J. Clin. Microbiol., 53: 486–92. Search in Google Scholar

Dipineto L., Santaniello A., Fontanella M., Lagos K., Fioretti A., Menna L.F. (2006). Presence of Shiga toxin-producing Escherichia coli O157:H7 in living layer hens. Letters Appl. Microbiol., 43: 293–295. Search in Google Scholar

Dobrucka R., Dlugaszewska J., Kaczmarek M. (2018). Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles using of Chelidonium majus extract. Biomed Microdev., 20: 5. Search in Google Scholar

El-Sayed, W. S., Elbahloul, Y., Saad, M. E., Hanafy, A. M., Hegazi, A. H., ElShafei, G. M. S., and Elbadry, M. J., 2019. Impact of nanoparticles on transcriptional regulation of catabolic genes of petroleum hydrocarbon-degrading bacteria in contaminated soil microcosms. Basic Microbiol., 59: 166–180.10.1002/jobm.20180018630468270 Search in Google Scholar

El-Tarabily K.A., El-Saadony M.T., Alagawany M., Arif M., Batiha G.E., Khafaga A.F., Abd El-Hack M.E. (2021). Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J. Biol. Sci., 28: 5145–5156. Search in Google Scholar

European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) (2000). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Inf., 6: 9.10.1046/j.1469-0691.2000.00142.x11168187 Search in Google Scholar

Farzana R., Iqra P., Shafaq F., Sumaira S., Zakia K. (2017). Antimicrobial Behavior of Zinc Oxide Nanoparticles and β-Lactam Antibiotics against Pathogenic Bacteria. Arch. Clin. Microbiol., 8: 57. Search in Google Scholar

Ghazi F., Henni D.E., Benmechernene, Kihal M. (2009). Phenotypic and whole cell protein analysis by SDSPAGE for identification of dominants lactic acid bacteria isolated from Algerian raw milk. World J. Dairy. Food Sci., 4: 78–87. Search in Google Scholar

Guo B.L., Han P., Guo L.C., Cao Y.Q., Li A.D., Kong J.Z., (2015). The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res. Lett., 10: 1047. Search in Google Scholar

Hemeg H.A. (2018). Molecular characterization of antibiotic resistant Escherichia coli isolates recovered from food samples and outpatient Clinics, KSA. Saudi J. Biol. Sci., 25: 928–931. Search in Google Scholar

Hozyen H.F., Ibrahim E.S., Khairy E.A., El-Dek S.I. (2019). Enhanced antibacterial activity of capped zinc oxide nanoparticles: A step towards the control of clinical bovine mastitis. Vet. World, 12: 1225–1232. Search in Google Scholar

Ibrahim H.M., Amin R.A., Eleiwa N.Z., Rezk H.G. (2017). Antibacterial action of zinc oxide nanoparticles against Staphylococcus aureus in broiler breast fillet. Benha Vet. Med. J., 33: 117–122. Search in Google Scholar

Islam F., Shohag S., Uddin M.J., Islam M.R., Nafady M.H., Akter A., Mitra S., Roy A., Emran T.B., Cavalu S. (2022). Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials, 15: 2160. Search in Google Scholar

Khodadadi E., Zeinalzadeh E., Taghizadeh S., Mehramouz B., Kamounah F.S., Khodadadi E., Kafil H.S. (2020). Proteomic applications in antimicrobial resistance and clinical microbiology studies. Inf. Drug Resist., 13: 1785. Search in Google Scholar

Lajhar S.A., Brownlie J., Barlow R. (2017). Survival capabilities of Escherichia coli O26 isolated from cattle and clinical sources in Australia to disinfectants, acids and Antimicrobials. BMC Microbiol., 17:47. Search in Google Scholar

Lee M.S., Koo S., Jeong D.G., Tesh V.L. (2016). Shiga toxins as multifunctional proteins: induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins, 8.10.3390/toxins8030077481022226999205 Search in Google Scholar

Li Z., Guob Z., Yin X., Ding S., Shen M., Zhang R., Wang Y., Xu R. (2020). Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomed. Pharm. 122: 109712. Search in Google Scholar

Lim J.I., Youn Y., Jang W., Hovde L., Carolyn J. (2017). A Brief Overview of Escherichia coli O157:H7 and Its Plasmid O157. J. Microbiol. Biotechnol., 20: 5–14. Search in Google Scholar

Liu Y., He L., Mustapha A., Li H., Hu Z.Q., Lin M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coliO157:H7. J. Appl. Microbiol., 107: 1193–1201. Search in Google Scholar

Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method., 25: 402–408. Search in Google Scholar

Makhluf S., Dror R., Nitzan Y., Abramovich Y., Jelinek R., Gedanken A. (2005). Microwave-assisted synthesis of nanocrystalline MgO and its uses a bacteriocide. Adv. Funct. Mater., 15: 1708–1715. Search in Google Scholar

Manzoor U., Siddique S., Ahmed R., Noreen Z., Bokhari H., Ahmad I. (2016). Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS One, 11: e0154704. Search in Google Scholar

Matuła K., Richter L., Janczuk-Richter M., (2019). Phenotypic plasticity of Escherichia coli upon exposure to physical stress induced by ZnO nanorods. Sci. Rep., 9: 8575. Search in Google Scholar

Meng Q., Bai X., Zhao A., Lan R., Du H., Wang T., Xiong Y. (2014). Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China. BMC Microbiol., 14: 1–14. Search in Google Scholar

Mohammadi P., Abiri R., Rezaei M., Salmanzadeh-Ahrabi S. (2013). Isolation of Shiga toxin-producing Escherichia coli from raw milk in Kermanshah, Iran. Iran J. Microbiol., 5: 233–238. Search in Google Scholar

Murinda S.E., Ibekwe A.M., Rodriguez N.G., Quiroz K.L., Mujica A.P., Osmon K. (2019). Shiga Toxin–Producing Escherichia coli in Mastitis: An International Perspective. Foodborne Pathogen. Dis.,16: 4. Search in Google Scholar

Mwaheb M.A., Abd Al Halim L.R., Abdel-Baset T.A., Hemeda N.F. (2021). Comparative In vitro study of the antimicrobial activity of metal-ZnO nanoparticles against several bacterial and fungal pathogens. Novel Res. Microbiol. J., 5: 1338–1350. Search in Google Scholar

Narayanan P.M., Wilson W.S., Abraham A.T., Sevanan M. (2012). Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. Bio Nanosci., 2: 329–335. Search in Google Scholar

Naskar A., Lee S., Kim K. (2020). Easy one-pot low-temperature synthesized Ag-ZnO nano-particles and their activity against clinical isolates of methicillin-resistant Staphylococcus aureus. Front. Bioeng. Biotechnol., 8: 216. Search in Google Scholar

Nemček L., Šebesta M., Urík M., Bujdoš M., Dobročka E., Vávra I. (2020). Impact of Bulk ZnO, ZnO Nanoparticles and Dissolved Zn on Early Growth Stages of Barley-A Pot Experiment. Plants (Basel), 15: 1365. Search in Google Scholar

Obata F., Tohyama K., Bonev A.D., Kolling G.L., Keepers T.R., Gross L.K., Nelson M.T., Sato S., Obrig T.G. (2008). Shiga Toxin 2 affects the ccentral nervous system through receptor Globotriaosylceramide localized to neurons. J. Inf. Dis., 198: 1398–1406. Search in Google Scholar

Patel A., Dibley M., Mamtani M., Badhoniya N., Kulkarni H. (2010). Influence of zinc supplementation in acute diarrhea differs by the isolated organism. Int. J. Pediatr, 671587.10.1155/2010/671587287954020592753 Search in Google Scholar

Ramadan M.A., Nassar S.H., Montaser A.S., El-Khatib E.M., Abdel-Aziz M.S. (2016). Synthesis of nano-sized zinc oxide and its application for cellulosic textiles, Egypt. J. Chem., 59: 523–535. Search in Google Scholar

Reddy L.S., Nisha M.M., Joice M., Shilpa P.N. (2014). Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm. Biol., 52: 1388–1397. Search in Google Scholar

Ross A., Willson V.L. (2017). One-Way Anova. In: Basic and Advanced Statistical Tests. Sense Publishers, Rotterdam. Search in Google Scholar

Rubab M. Oh D.H. (2020). Virulence Characteristics and Antibiotic Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Diverse Sources. Antibiotics, 9: 587. Search in Google Scholar

Sheiha A.M., Abdelnour S.A., Abd El-Hack M.E., Khafaga A.F., Metwally K.A., Ajarem J.S., El-Saadony M.T. (2020). Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals, 10: 430. Search in Google Scholar

Shridhar P.B., Patel I.R., Gangiredla J., Noll L.W., Shi X., Bai J., Nagaraja T.G. (2019). DNA micro array-based genomic characterization of the pathotypes of Escherichia coli O26, O45, O103, O111, and O145 isolated from feces of feedlot Cattle. J. Food Prot., 82: 395–404. Search in Google Scholar

Siddiqi K.S., Rahman A., Husen A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Let., 13: 141. Search in Google Scholar

Sikora P., Augustyniak A., Cendrowski K., Nawrotek P., Mijowska E. (2018). Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO nanoparticles in scope of their further application in sing. Springer Nature Singapore Pte Ltd., ISBN 978-981-13-6003-9. Search in Google Scholar

Singh S., Maurya P.K. (2019). Nanotechnology in Modern Animal Biotechnology: Recent Trends and Future Perspectives. Springer Nature Singapore Pte Ltd., ISBN 978-981-13-6003-9.10.1007/978-981-13-6004-6 Search in Google Scholar

Stoimenov P.K., Klinger R.L., Marchin G.L., Klabunde K.J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18: 6679–6686. Search in Google Scholar

Stromberg Z.R., Lewis G.L., Marx D.B., Moxley R.A. (2015). Comparison of enrichment broths for supporting growth of Shiga toxin producing Escherichia coli. Curr. Microbiol., 71: 214e9. Search in Google Scholar

Sungkaworn T., Triampo W. Nalakarn P., Triampo D., Tang I.M., Lenbury Y. (2007). The effects of TiO2 nanoparticles on tumor cell colonies: fractal dimension and morphological properties. Inter. J. Biomed. Sci., IJBS, 2: 67–74. Search in Google Scholar

Tayel A., El-tras F., Moussa S., El-baz A., Mahrous H., Salem F., Brimer L. (2011). Antibacterial Action of Zinc Oxide Nanoparticles against Foodborne Pathogens. J. Food Safety, 31: 211–218. Search in Google Scholar

Thangam A., Pritam M., Akshmi S.A. (2014). Effect of ZNO nano particles against strains of Escherichia coli. Asian J. Pharm. Clin. Res., 7: 202–206. Search in Google Scholar

Torabi L.R. (2017). The Antibacterial effects of Zno nanoparticles on patients with urinary tract infection isolated from Alzahra Hospital in Isfahan, Iran. Zahedan J. Res. Med. Sci., 19: e10359. Search in Google Scholar

Tsakou F., Jersie-Christensen R., Jenssen H., Mojsoska B. (2020). The Role of Proteomics in Bacterial Response to Antibiotics. Pharmaceuticals, 13: 214. Search in Google Scholar

Uemura R., Katsuge T., Sasaki Y., Goto S., Sueyoshi M. (2017). Effects of zinc supplementation on Shiga toxin 2e-producing Escherichia coli in vitro. J. Vet. Med. Sci.,79: 1637–1643. Search in Google Scholar

Wagner G., Korenkov V., Judy J.D., Bertsch P.M. (2016). Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination In vitro and P. tabacina Infectivity on Tobacco Leaves. Nanomaterials (Basel), 6: 50. Search in Google Scholar

Wang, C., Liu, L., Zhang, A., Xie, P., Lu, J., and Zou, X., 2012. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88. African J. Biotechnol., 11: 10248–10254.10.5897/AJB11.3703 Search in Google Scholar

Woodhouse E.J. (2004). Nanotechnology controversies. Technol. Soc. Mag. IEEE, 23: 6–8. Search in Google Scholar

Xiaolia L., Dudley E.G. (2017). A quantitative enzyme-linked immunosorbent assay for Shiga toxin 2a requiring only commercially available reagents. Adv. Food Technol. Nutr. Sci. Open J., 3: 6–14. Search in Google Scholar

Yehia N., AbdelSabour M.A., Erfan A.M., Ali Z.M., Soliman R.A., Samy A., Abd El-Hack M. E., Ahmed K.A. (2022). Selenium nanoparticles enhance the efficacy of homologous vaccine against the highly pathogenic avian influenza H5N1 virus in chickens. Saudi J. Biol. Sci., 29: 2095–2111. Search in Google Scholar

Yusof H.M., Mohamad R., Zaidan U.H., Rahman N.A. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol., 10: 1–22. Search in Google Scholar

Zhang L., Jiang Y., Ding Y., Daskalakis N., Jeuken L., Povey M., O’Neill A.J., York D.W. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res., 12: 1625–1636. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo