1. bookVolumen 22 (2022): Edición 3 (July 2022)
Detalles de la revista
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año
access type Acceso abierto

Understanding microbial networks of farm animals through genomics, metagenomics and other meta-omic approaches for livestock wellness and sustainability – A Review

Publicado en línea: 19 Jul 2022
Volumen & Edición: Volumen 22 (2022) - Edición 3 (July 2022)
Páginas: 839 - 853
Recibido: 03 Oct 2021
Aceptado: 17 Nov 2021
Detalles de la revista
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año

The association of microorganisms with livestock as endosymbionts, opportunists, and pathogens has been a matter of debate for a long time. Several livestock-associated bacterial and other microbial species have been identified and characterized through traditional culture-dependent genomic approaches. However, it is imperative to understand the comprehensive microbial network of domestic animals for their wellness, disease management, and disease transmission control. Since it is strenuous to provide a niche replica to any microorganisms while culturing them, thus a substantial number of microbial communities remain obscure. Metagenomics has laid out a powerful lens for gaining insight into the hidden microbial diversity by allowing the direct sequencing of the DNA isolated from any livestock sample like the gastrointestinal tract, udder, or genital system. Through metatranscriptomics and metabolomics, understanding gene expression profiles of the microorganisms and their molecular phenotype has become unchallenging. With large data sets emerging out of the genomic, metagenomic, and other meta-omics methods, several computational tools have also been developed for curation, assembly, gene prediction, and taxonomic profiling of the microorganisms. This review provides a detailed account of the beneficial and pathogenic organisms that dwell within or on farm animals. Besides, it highlights the role of meta-omics and computational tools in a comprehensive analysis of livestock-associated microorganisms.


Abdel-Mohsein H., Yamamoto N., Otawa K., Tada C., Nakai Y. (2010). Isolation of bacteriocin-like substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol., 56: 151–161. Search in Google Scholar

Aguiar-Pulido V., Huang W., Suarez-Ulloa V., Cickovski T., Mathee K., Narasimhan G. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evolut. Bioinf. Online, 12 (Suppl 1): 5–16. Search in Google Scholar

Ahlborn N., Young W., Mullaney J., Samuelsson L.M. (2020). In vitro fermentation of sheep and cow milk using infant fecal bacteria. Nutrients, 12: 1802. Search in Google Scholar

Altmäe S., Franasiak J.M., Mändar R. (2019). The seminal microbiome in health and disease. Nature Reviews. Urology, 16: 703–721. Search in Google Scholar

Amat S., Lantz H., Munyaka P.M., Willing B.P. (2020). Prevotella in pigs: The positive and negative associations with production and health. Microorganisms, 8: 1584. Search in Google Scholar

Amin N., Schwarzkopf S., Kinoshita A., Tröscher-Mußotter J., Dänicke S., Camarinha-Silva A., Huber K., Frahm J., Seifert J. (2021). Evolution of rumen and oral microbiota in calves is influenced by age and time of weaning. Anim. Microb., 3: 31. Search in Google Scholar

Baker J.M., Chase D.M., Herbst-Kralovetz M.M. (2018). Uterine microbiota: residents, tourists, or invaders? Front. Immunol., 9: 208. Search in Google Scholar

Bashiardes S., Zilberman-Schapira G., Elinav E. (2016). Use of metatranscriptomics in microbiome research. Bioinf. Biol. Insights, 10: 19–25. Search in Google Scholar

Bashir Y., Pradeep Singh S., Kumar Konwar B. (2014). Metagenomics: an application based perspective. Chinese J. Biol., 2014: 146030. Search in Google Scholar

Belkaid Y., Hand T. (2014). Role of the microbiota in immunity and inflammation. Cell, 157: 121–141. Search in Google Scholar

Berini F., Casciello C., Marcone G., Marinelli F. (2017). Metagenomics: Novel enzymes from non-culturable microbes. FEMS Microb. Lett., 364.10.1093/femsle/fnx21129029060 Search in Google Scholar

Bertin Y., Habouzit C., Dunière L., Laurier M., Durand A., Duchez D., Segura A., Thévenot-Sergentet D., Baruzzi F., Chaucheyras-Durand F., Forano E. (2017). Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety? PLoS ONE, 12(11): e0187229. Search in Google Scholar

Bianchi R.M., Schwertz C.I., de Cecco B.S., Panziera W., De Lorenzo C., Heck L.C., Snel G. G.M., Lopes B.C., da Silva F.S., Pavarini S.P., Driemeier D. (2019). Pathological and microbiological characterization of mastitis in dairy cows. Trop. Anim. Health Prod., 51: 2057–2066. Search in Google Scholar

Black J.L., Davison T.M., Box I. (2021). Methane emissions from ruminants in Australia: mitigation potential and applicability of mitigation strategies. Animals, 11: 951. Search in Google Scholar

Blakebrough-Hall C., Dona A., D’occhio M.J., McMeniman J., González L.A. (2020). Diagnosis of bovine respiratory disease in feedlot cattle using blood 1 H NMR metabolomics. Sci. Rep., 10: 115. Search in Google Scholar

Boersma M.G., Solyanikova I.P., Van Berkel W., Vervoort J., Golovleva L.A., Rietjens I. (2001). F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J. Indust. Microbiol. Biotechnol., 26: 22–34. Search in Google Scholar

Brock F.M., Forsberg C.W., Buchanan-Smith J.G. (1982). Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. Environ. Microbiol., 44: 561–569. Search in Google Scholar

Brüggemann H., Gottschalk G. (2004). Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe, 10: 53–68. Search in Google Scholar

Caffarena R.D., Rabaza A., Casaux L., Rioseco M.M., Schild C.O., Monesiglio C., Fraga M., Giannitti F., Riet-Correa F. (2018). Natural lymphatic (“atypical”) actinobacillosis in cattle caused by Actinobacillus lignieresii. J. Vet. Diagnost. Invest., 30: 218–225. Search in Google Scholar

Calvo-Bado L.A., Oakley B.B., Dowd S.E., Green L.E., Medley G.F., Ul-Hassan A., Bateman V., Gaze W., Witcomb L., Grogono-Thomas R., Kaler J., Russell C.L., Wellington E. M.H. (2011). Ovine pedomics: The first study of the ovine foot 16S rRNA-based microbiome. ISME J., 5: 1426–1437. Search in Google Scholar

Carslake D., Grant W., Green L.E., Cave J., Greaves J., Keeling M., McEldowney J., Weldegebriel H., Medley G.F. (2011). Endemic cattle diseases: Comparative epidemiology and governance. Philosoph. Transact. Royal Soc. B: Biol. Sci., 366: 1975–1986. Search in Google Scholar

Chang Y., Hou F., Pan Z., Huang Z., Han N., Bin L., Deng H., Li Z., Ding L., Gao H., Zhi F., Yang R., Bi Y. (2019). Optimization of culturomics strategy in human fecal samples. Front. Microbiol, 10: 2891. Search in Google Scholar

Cheema T.A., Jirajaroenrat K., Sirinarumitr T., Rakshit S.K. (2012). Isolation of a gene encoding a cellulolytic enzyme from swamp buffalo rumen metagenomes and its cloning and expression in Escherichia coli. Anim. Biotechnol., 23: 261–277. Search in Google Scholar

Chen C., Zhou Y., Fu H., Xiong X., Fang S., Jiang H., Wu J., Yang H., Gao J., Huang L. (2021). Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nature Commun., 12: 1106. Search in Google Scholar

Chen L., Shen Y., Wang C., Ding L., Zhao F., Wang M., Fu J., Wang H. (2019). Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models. Front. Microbiol., 10.10.3389/fmicb.2019.00162637433130792704 Search in Google Scholar

Chikindas M.L., Weeks R., Drider D., Chistyakov V.A., Dicks L.M.T. (2018). Functions and emerging applications of bacteriocins. Curr. Opin. Biotechnol., 49: 23–28. Search in Google Scholar

Clemmons B.A., Reese S.T., Dantas F.G., Franco G.A., Smith T.P.L., Adeyosoye O.I., Pohler K.G., Myer P.R. (2017). Vaginal and uterine bacterial communities in postpartum lactating cows. Front. Microbiol., 8.10.3389/fmicb.2017.01047546335528642755 Search in Google Scholar

Colin P.-Y., Kintses B., Gielen F., Miton C.M., Fischer G., Mohamed M.F., Hyvönen M., Morgavi D.P., Janssen D.B., Hollfelder F. (2015). Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nature Commun., 6: 10008. Search in Google Scholar

Conlon M.A., Bird A.R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7: 17–44. Search in Google Scholar

Cornick N.A., Stanton T.B. (2015). Lachnospira. In: Bergey’s manual of Systematics of Archaea and Bacteria. American Cancer Society, pp. 1–6.10.1002/9781118960608.gbm00647 Search in Google Scholar

Costa H.N., Lage C.F.A., Malacco V.M.R., Belli A.L., Carvalho A.U., Facury E.J., Molina L.R. (2019). Frequency of microorganisms isolated at different stages of lactation and milk production loss associated with somatic cell count and to mastitis-causing pathogens. Arq. Brasil. Med. Vet. Zoot., 71: 393–403. Search in Google Scholar

Crowe M.A., Hostens M., Opsomer G. (2018). Reproductive management in dairy cows – the future. Irish Vet. J., 71.10.1186/s13620-017-0112-y575923729321918 Search in Google Scholar

Dean C.J., Slizovskiy I.B., Crone K.K., Pfennig A.X., Heins B.J., Caixeta L.S., Noyes N.R. (2021). Investigating the cow skin and teat canal microbiomes of the bovine udder using different sampling and sequencing approaches. J. Dairy Sci., 104: 644–661. Search in Google Scholar

Delano M.L., Mischler S.A., Underwood W.J. (2002). Chapter 14 – Biology and diseases of ruminants: sheep, goats, and cattle. In: Laboratory Animal Medicine, J.G. Fox, L.C. Anderson, F.M. Loew, F.W. Quimby (eds). 2nd ed. Academic Press, pp. 519–614. Search in Google Scholar

Emwas A.H., Roy R., McKay R.T., Tenori L., Saccenti E., Nagana Gowda G.A., Raftery D., Alahmari F., Jaremko L., Jaremko M., Wishart D.S. (2019). NMR spectroscopy for metabolomics research. Metabolites, 9.10.3390/metabo9070123668082631252628 Search in Google Scholar

Esteban-Blanco C., Gutiérrez-Gil B., Puente-Sánchez F., Marina H., Tamames J., Acedo A., Arranz J.J. (2020). Microbiota characterization of sheep milk and its association with somatic cell count using 16s rRNA gene sequencing. J. Anim. Breed. Genet., 137: 73–83. Search in Google Scholar

Fahim K.M., Ismael E., Khalefa H.S., Farag H.S., Hamza D.A. (2019). Isolation and characterization of E. coli strains causing intramammary infections from dairy animals and wild birds. Int. J. Vet. Sci. Med., 7: 61–70. Search in Google Scholar

Foroutan A., Fitzsimmons C., Mandal R., Piri-Moghadam H., Zheng J., Guo A., Li C., Guan L.L., Wishart D.S. (2020). The bovine metabolome. Metabolites, 10.10.3390/metabo10060233734508732517015 Search in Google Scholar

Galvão K.N., Bicalho R.C., Jeon S.J. (2019). Symposium review: The uterine microbiome associated with the development of uterine disease in dairy cows. J. Dairy Sci., 102: 11786–11797. Search in Google Scholar

Gauly M., Chemineau P., Rosati A., Sartin J. (2021). COVID-19 pandemic – How and why animal production suffers? Anim. Front., 11: 3–5. Search in Google Scholar

Gupta N., Verma V.K. (2019). Next-generation sequencing and its application: empowering in public health beyond reality. Microb. Technol. Welf. Soc., 17: 313–341. Search in Google Scholar

Hameed M., Wahaab A., Shan T., Wang X., Khan S., Di D., Xiqian L., Zhang J.-J., Anwar M. N., Nawaz M., Li B., Liu K., Shao D., Qiu Y., Wei J., Ma Z. (2021). A metagenomic analysis of mosquito virome collected from different animal farms at Yunnan–Myanmar border of China. Front. Microb., 11: 591478. Search in Google Scholar

Hamid M.E., Musa M.S. (2009). The treatment of bovine dermatophilosis and its effect on some haematological and blood chemical parameters. Rev. Sci. Tech. (Int. Office Epizoot.), 28: 1111–1118. Search in Google Scholar

Hanchi H., Mottawea W., Sebei K., Hammami R. (2018). The genus Enterococcus: between probiotic potential and safety concerns – an update. Front. Microbiol., 9: 1791. Search in Google Scholar

Handelsman J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev., 68: 669–685. Search in Google Scholar

Hanning I., Diaz-Sanchez S. (2015). The functionality of the gastrointestinal microbiome in non-human animals. Microbiome, 3: 51. Search in Google Scholar

Hashem N.M., Shehata M.G. (2021). Antioxidant and antimicrobial activity of Cleome droserifolia (Forssk.) Del. and its biological effects on redox status, immunity, and gut microflora. Animals, 11: 1929. Search in Google Scholar

Hashem N.M., González-Bulnes A., Rodriguez-Morales A.J. (2020). Animal welfare and livestock supply chain sustainability under the COVID-19 outbreak: an overview. Front. Vet. Sci., 7: 582528. Search in Google Scholar

Hashem N.M., Hassanein E.M., Hocquette J.-F., Gonzalez-Bulnes A., Ahmed F.A., Attia Y.A., Asiry K.A. (2021). Agro-livestock farming system sustainability during the COVID-19 era: a cross-sectional study on the role of information and communication technologies. Sustainability, 13: 6521. Search in Google Scholar

Hassan F., Arshad M.A., Ebeid H.M., Rehman M.S., Khan M.S., Shahid S., Yang C. (2020). Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet – microbe interaction. Front. Vet. Sci., 7.10.3389/fvets.2020.575801768852233263013 Search in Google Scholar

Herath S., Lilly S.T., Fischer D.P., Williams E.J., Dobson H., Bryant C.E., Sheldon I.M. (2009). Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2alpha to prostaglandin E2 in bovine endometrium. Endocrinology, 150: 1912–1920. Search in Google Scholar

Hess M., Paul S.S., Puniya A.K., van der Giezen M., Shaw C., Edwards J.E., Fliegerová K. (2020). Anaerobic fungi: past, present, and future. Front. Microbiol., 11: 584893. Search in Google Scholar

Himsworth C.G., Elkin B.T., Nishi J.S., Neimanis A.S., Wobeser G.A., Turcotte C., Leighton F.A. (2010). An outbreak of bovine tuberculosis in an intensively managed conservation herd of wild bison in the Northwest Territories. Can. Vet. J., 51: 593–597. Search in Google Scholar

Hinsu A.T., Tulsani N.J., Panchal K.J., Pandit R.J., Jyotsana B., Dafale N.A., Patil N.V., Purohit H.J., Joshi C.G., Jakhesara S.J. (2021). Characterizing rumen microbiota and CAZyme profile of Indian dromedary camel (Camelus dromedarius) in response to different roughages. Sci. Rep., 11: 9400. Search in Google Scholar

Hiraoka S., Yang C., Iwasaki W. (2016). Metagenomics and bioinformatics in microbial ecology: current status and beyond. Microb. Environ., 31: 204–212. Search in Google Scholar

Holley R., Walkty J., Blank G., Tenuta M., Ominski K., Krause D., Ng L.-K. (2008). Examination of Salmonella and Escherichia coli translocation from hog manure to forage, soil, and cattle grazed on the hog manure-treated pasture. J. Environ. Qual., 37: 2083–2092. Search in Google Scholar

Holschbach C.L., Peek S.F. (2018). Salmonella in dairy cattle. The veterinary clinics of north america. Food Anim. Pract., 34: 133–154. Search in Google Scholar

Hoque M.N., Istiaq A., Clement R.A., Sultana M., Crandall K.A., Siddiki A.Z., Hossain M.A. (2019). Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci. Rep., 9: 13536. Search in Google Scholar

Huang Y., Marden J.P., Julien C., Bayourthe C. (2018). Redox potential: An intrinsic parameter of the rumen environment. J. Anim. Physiol. Anim. Nutr., 102: 393–402. Search in Google Scholar

Hulbert L.E., Moisá S.J. (2016). Stress, immunity, and the management of calves. J. Dairy Sci., 99: 3199–3216. Search in Google Scholar

Jaja I.F., Mushonga B., Green E., Muchenje V. (2016). Prevalence of lung lesions in slaughtered cattle in the Eastern Cape Province, South Africa. J. South Afr. Vet. Assoc., 87: 1362. Search in Google Scholar

Jose V.L., Appoothy T., More R.P., Arun A.S. (2017). Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw. AMB Express, 7: 13. Search in Google Scholar

Kamke J., Kittelmann S., Soni P., Li Y., Tavendale M., Ganesh S., Janssen P.H., Shi W., Froula J., Rubin E.M., Attwood G.T. (2016). Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome, 4: 56. Search in Google Scholar

Kasa G., Tegegne B., Tadesse B. (2020). Isolation and identification of major pathogenic bacteria from clinical mastitic cows in Asella Town, Ethiopia. Vet. Med. Int., 2020: e6656755. Search in Google Scholar

Khodakaram-Tafti A., Ikede B.O. (2005). A retrospective study of sporadic bovine abortions, stillbirths, and neonatal abnormalities in Atlantic Canada, from 1990 to 2001. Can. Vet. J., 46: 635–637. Search in Google Scholar

Krause J.L., Haange S.-B., Schäpe S.S., Engelmann B., Rolle-Kampczyk U., Fritz-Wallace K., Wang Z., Jehmlich N., Türkowsky D., Schubert K., Pöppe J., Bote K., Rösler U., Herberth G., von Bergen M. (2020). The glyphosate formulation Roundup® LB plus influences the global metabolome of pig gut microbiota in vitro. Sci. Total Environ., 745: 140932. Search in Google Scholar

Kristula M. (2014). Chapter 38 – Contagious equine metritis. In: Equine Infectious Diseases, 2nd ed., D.C. Sellon, M.T. Long (eds.). W.B. Saunders, pp. 339–343. Search in Google Scholar

Kwok K.T.T., Nieuwenhuijse D.F., Phan M.V.T., Koopmans M.P.G. (2020). Virus metagenomics in farm animals: a systematic review. Viruses, 12: 107. Search in Google Scholar

Lakhundi S., Zhang K. (2018). Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev., 31: e00020-18. Search in Google Scholar

Lee Y.H., Kim S.K., Kim Y.H., Jeong Y.S., Yun M.G., Cho J.J., Kim J.M., Yun H.D., Kim H. (2010). Archaeal diversity during composting of pig manure and mushroom cultural waste based on 16S rRNA sequence. J. Korean Soc. Appl. Biol. Chem., 53: 230–236. Search in Google Scholar

Li B., Zhu Y., Gu Z., Chen Y., Leng J., Gou X., Feng L., Li Q., Xi D., Mao H., Yang S.-L. (2016). Screening and characterization of a novel ruminal cellulase gene (Umcel-1) from a metagenomic library of gayal (Bos frontalis). J. Integr. Agricult., 15: 855–861. Search in Google Scholar

Li F., Chen C., Wei W., Wang Z., Dai J., Hao L., Song L., Zhang X., Zeng L., Du H., Tang H., Liu N., Yang H., Wang J., Madsen L., Brix S., Kristiansen K., Xu X., Li J., Wu R., Jia H. (2018). The metagenome of the female upper reproductive tract. GigaScience, 7(10). Search in Google Scholar

Li F., Hitch T.C.A., Chen Y., Creevey C.J., Guan L.L. (2019 a). Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome, 7: 6.10.1186/s40168-019-0618-5633291630642389 Search in Google Scholar

Li F., Li C., Chen Y., Liu J., Zhang C., Irving B., Fitzsimmons C., Plastow G., Guan L.L. (2019 b). Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome, 7: 92.10.1186/s40168-019-0699-1656744131196178 Search in Google Scholar

Li M.M., White R.R., Guan L.L., Harthan L., Hanigan M.D. (2021). Metatranscriptomic analyses reveal ruminal pH regulates fiber degradation and fermentation by shifting the microbial community and gene expression of carbohydrate-active enzymes. Anim. Microb., 3: 32. Search in Google Scholar

Lin Y., Yang H., Ahmad M.J., Yang Y., Yang W., Riaz H., Abulaiti A., Zhang S., Yang L., Hua G. (2021). Postpartum uterine involution and embryonic development pattern in Chinese Holstein dairy cows. Front. Vet. Sci., 7.10.3389/fvets.2020.604729787408933585595 Search in Google Scholar

Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. (2012). Comparison of next-generation sequencing systems. J. Biomed. Biotechnol., 2012: e251364. Search in Google Scholar

Long J.A. (2020). The “omics” revolution: Use of genomic, transcriptomic, proteomic and metabolomic tools to predict male reproductive traits that impact fertility in livestock and poultry. Anim. Reprod. Sci., 220: 106354. Search in Google Scholar

Lucy M.C. (2007). Fertility in high-producing dairy cows: Reasons for decline and corrective strategies for sustainable improvement. Soc. Reprod. Fertil. Suppl., 64: 237–254. Search in Google Scholar

Mach N., Berri M., Estellé J., Levenez F., Lemonnier G., Denis C., Leplat J.-J., Chevaleyre C., Billon Y., Doré J., Rogel-Gaillard C., Lepage P. (2015). Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep., 7: 554–569. Search in Google Scholar

Mao S., Zhang M., Liu J., Zhu W. (2015). Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Sci. Rep., 5: 16116. Search in Google Scholar

Markowiak P., Śliżewska K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10: 21. Search in Google Scholar

Matsumoto N., Taniwaki T., Kinuta M., Murase T. (2008). Isolation of Campylobacter jejuni and coliform bacilli from bile and liver obtained from slaughter cattle in Western Japan. J. Food Protect., 71: 1228–1231. Search in Google Scholar

Matthews C., Crispie F., Lewis E., Reid M., O’Toole P.W., Cotter P.D. (2018). The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microb., 10: 115–132. Search in Google Scholar

Merchen N.R., Elizalde J.C., Drackley J.K. (1997). Current perspective on assessing site of digestion in ruminants. J. Anim. Sci., 75: 2223–2234. Search in Google Scholar

Miao Y., Mei Q., Fu C., Liao M., Liu Y., Xu X., Li X., Zhao S., Xiang T. (2021). Genome-wide association and transcriptome studies identify candidate genes and pathways for feed conversion ratio in pigs. BMC Genom., 22: 294. Search in Google Scholar

Mohamed H.A., Klink E.V., ElHassan S.M. (2016). Damage caused by spoilage bacteria to the structure of cattle hides and sheep skins. Int. J. Anim. Health Livest. Prod. Res., 2: 39–56. Search in Google Scholar

Molina N.M., Sola-Leyva A., Saez-Lara M.J., Plaza-Diaz J., Tubić-Pavlović A., Romero B., Clavero A., Mozas-Moreno J., Fontes J., Altmäe S. (2020). New opportunities for endometrial health by modifying uterine microbial composition: present or future? Biomolecules, 10: 593.10.3390/biom10040593722603432290428 Search in Google Scholar

Moore D.P., Cantón G.J., Louge Uriarte E.L. (2021). Editorial: Infectious diseases affecting reproduction and the neonatal period in cattle. Front. Vet. Sci., 8: 679007. Search in Google Scholar

Moraïs S., Mizrahi I. (2019). Islands in the stream: From individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol. Rev., 43: 362–379. Search in Google Scholar

Moreira G.C.M., Poleti M.D., Pértille F., Boschiero C., Cesar A.S.M., Godoy T.F., Ledur M.C., Reecy J.M., Garrick D.J., Coutinho L.L. (2019). Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach. BMC Genet., 20: 83. Search in Google Scholar

Mullany P. (2014). Functional metagenomics for the investigation of antibiotic resistance. Virulence, 5: 443–447. Search in Google Scholar

Murphy M.R. (2011). Nutrients, digestion and absorption. Fermentation in the rumen. In: Encyclopedia of Dairy Sciences, 2nd ed., J.W. Fuquay (ed.). Academic Press, pp. 980–984. Search in Google Scholar

Muwonge A., Oloya J., Kankya C., Nielsen S., Godfroid J., Skjerve E., Djønne B., Johansen T.B. (2014). Molecular characterization of Mycobacterium avium subspecies hominissuis isolated from humans, cattle and pigs in the Uganda cattle corridor using VNTR analysis. Infec. Genet. Evol., 21: 184–191. Search in Google Scholar

Nagasawa Y., Kiku Y., Sugawara K., Yabusaki N., Oono K., Fujii K., Suzuki T., Maehana K., Hayashi T. (2020). Rapid Staphylococcus aureus detection from clinical mastitis milk by colloidal gold nanoparticle-based immunochromatographic strips. Front. Vet. Sci., 6.10.3389/fvets.2019.00504698851032039249 Search in Google Scholar

Nathani N.M., Patel A.K., Dhamannapatil P.S., Kothari R.K., Singh K.M., Joshi C.G. (2013). Comparative evaluation of rumen metage-nome community using qPCR and MG-RAST. AMB Express, 3: 55. Search in Google Scholar

Nathani N.M., Patel A.K., Mootapally C.S., Reddy B., Shah S.V., Lunagaria P.M., Kothari R.K., Joshi C.G. (2015). Effect of roughage on rumen microbiota composition in the efficient feed converter and sturdy Indian Jaffrabadi buffalo (Bubalus bubalis). BMC Genom., 16: 1116. Search in Google Scholar

Neelakanta G., Sultana H. (2013). The use of metagenomic approaches to analyze changes in microbial communities. Microbiol. Insights, 6: 37–48. Search in Google Scholar

Neumann A.P., Weimer P.J., Suen G. (2018). A global analysis of gene expression in Fibrobacter succinogenes S85 grown on cellulose and soluble sugars at different growth rates. Biotechnol. Biofuels, 11: 295. Search in Google Scholar

Neves A.L.A., Chen Y., Lê Cao K.-A., Mandal S., Sharpton T.J., McAllister T., Guan L.L. (2020). Taxonomic and functional assessment using metatranscriptomics reveals the effect of Angus cattle on rumen microbial signatures. Int. J. Anim. Biosci., 14: 731–744. Search in Google Scholar

Ng T.F.F., Kondov N.O., Deng X., Van Eenennaam A., Neibergs H.L., Delwart E. (2015). A metagenomics and case-control study to identify viruses associated with bovine respiratory disease. J. Virol., 89: 5340–5349. Search in Google Scholar

Ngara T.R., Zhang H. (2018). Recent advances in function-based metagenomic screening. Genom. Proteom. Bioinf., 16: 405–415. Search in Google Scholar

Nguyen N.H., Maruset L., Uengwetwanit T., Mhuantong W., Harnpicharnchai P., Champreda V., Tanapongpipat S., Jirajaroenrat K., Rakshit S.K., Eurwilaichitr L., Pongpattanakitshote S. (2012). Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci. Biotechnol. Biochem., 76: 1075–1084. Search in Google Scholar

Obese F.Y., Osei-Amponsah R., Timpong-Jones E., Bekoe E. (2021). Impact of COVID-19 on animal production in Ghana. Anim. Front., 11: 43–46. Search in Google Scholar

Ochiel D.O., Fahey J.V., Ghosh M., Haddad S.N., Wira C.R. (2008). Innate immunity in the female reproductive tract: role of sex hormones in regulating uterine epithelial cell protection against pathogens. Curr. Women. Health Rev., 4: 102–117. Search in Google Scholar

Owaki S., Kawabuchi S., Ikemitsu K., Shono H., Furuoka H. (2015). Pathological findings of hemorrhagic bowel syndrome (HBS) in six dairy cattle cases. J. Vet. Med. Sci., 77: 879–881. Search in Google Scholar

Oyama L.B., Girdwood S.E., Cookson A.R., Fernandez-Fuentes N., Privé F., Vallin H.E., Wilkinson T.J., Golyshin P.N., Golyshina O.V., Mikut R., Hilpert K., Richards J., Wootton M., Edwards J.E., Maresca M., Perrier J., Lundy F.T., Luo Y., Zhou M., Hess M., Mantovani H.C., Creevey C.J., Huws S.A. (2017). The rumen microbiome: An underexplored resource for novel anti-microbial discovery. Npj Biofilms Microbiom., 3: 1–9. Search in Google Scholar

Pandit R.J., Hinsu A.T., Patel S.H., Jakhesara S.J., Koringa P.G., Bruno F., Psifidi A., Shah S.V., Joshi C.G. (2018). Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches. System. Appl. Microbiol., 41: 374–385. Search in Google Scholar

Peng X., Wilken S.E., Lankiewicz T.S., Gilmore S.P., Brown J.L., Henske J.K., Swift C.L., Salamov A., Barry K., Grigoriev I.V., Theodorou M.K., Valentine D.L., O’Malley M.A. (2021). Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat. Microbiol., 6: 499–511. Search in Google Scholar

Peric A., Weiss J., Vulliemoz N., Baud D., Stojanov M. (2019). Bacterial colonization of the female upper genital tract. Int. J. Mol. Sci., 20: 3405. Search in Google Scholar

Petri R.M., Schwaiger T., Penner G.B., Beauchemin K.A., Forster R.J., McKinnon J.J., McAllister T.A. (2013). Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS One, 8(12): e83424. Search in Google Scholar

Poutahidis T., Springer A., Levkovich T., Qi P., Varian B.J., Lakritz J.R., Ibrahim Y.M., Chatzigiagkos A., Alm E.J., Erdman S.E. (2014). Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One, 9(1).10.1371/journal.pone.0084877387936524392159 Search in Google Scholar

Qi X., Yun C., Pang Y., Qiao J. (2021). The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microb., 13: 1–21. Search in Google Scholar

Qiu Y., Wang S., Huang B., Zhong H., Pan Z., Zhuang Q., Peng C., Hou G., Wang K. (2019). Viral infection detection using metagenomics technology in six poultry farms of eastern China. PLoS One, 14(2): e0211553. Search in Google Scholar

Quereda J.J., Meza-Torres J., Cossart P., Pizarro-Cerdá J. (2017). Listeriolysin S: A bacteriocin from epidemic Listeria monocytogenes strains that targets the gut microbiota. Gut Microb., 8: 384–391. Search in Google Scholar

Rahimi E., Sepehri S., Safarpoor Dehkordi F., Shaygan S., Momtaz H. (2014). Prevalence of Yersinia species in traditional and commercial dairy products in Isfahan Province, Iran. Jundishapur J. Microbiol., 7: e9249. Search in Google Scholar

Ravi R.K., Walton K., Khosroheidari M. (2018). MiSeq: A next generation sequencing platform for genomic analysis. Method. Mol. Biol. (Clifton, N.J.), 1706: 223–232. Search in Google Scholar

Redington J.M., Breydo L., Almehdar H.A., Redwan E.M., Uversky V.N. (2016). α-Lactalbumin: of camels and cows. Prot. Pept. Lett., 23: 1072–1080. Search in Google Scholar

Reis J.A., Paula A.T., Casarotti S.N., Penna A.L.B. (2012). Lactic acid bacteria antimicrobial compounds: characteristics and applications. food engineering reviews, 4: 124–140. Search in Google Scholar

Rinke C., Schwientek P., Sczyrba A., Ivanova N.N., Anderson I.J., Cheng J.-F., Darling A., Malfatti S., Swan B.K., Gies E.A., Dodsworth J.A., Hedlund B.P., Tsiamis G., Sievert S.M., Liu W.-T., Eisen J.A., Hallam S.J., Kyrpides N.C., Stepanauskas R., Rubin E.M., Hugenholtz P., Woyke T. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499: 431–437. Search in Google Scholar

Ronner A.B., Cliver D.O. (1990). Isolation and characterization of a coliphage specific for Escherichia coli 0157:H7. J. Food Protect., 53: 944–947. Search in Google Scholar

Ross A.A., Rodrigues Hoffmann A., Neufeld J.D. (2019). The skin microbiome of vertebrates. Microbiome, 7: 79. Search in Google Scholar

Rzewuska M., Kwiecień E., Chrobak-Chmiel D., Kizerwetter-Świda M., Stefańska I., Gieryńska M. (2019). Pathogenicity and virulence of Trueperella pyogenes: a review. Int. J. Mol. Sci., 20: 2737. Search in Google Scholar

Saha T.K., Begum F., Kabir S.L., Islam M.S., Khan M.S.R. (2019). Characterization of bacterial isolates from skin lesions of sheep, goat and cattle in different rearing condition. Asian J. Med. Biol. Res., 5: 117–125. Search in Google Scholar

Samadi A., Ababneh M.MK., Giadinis N.D., Lafi S.Q. (2010). Ovine and caprine brucellosis (Brucella melitensis) in aborted animals in Jordanian sheep and goat flocks. Vet. Med. Int., 2010: 458695. Search in Google Scholar

Sanglard L.P., Schmitz-Esser S., Gray K.A., Linhares D.C.L., Yeoman C.J., Dekkers J.C.M., Niederwerder M.C., Serão N.V.L. (2020). Investigating the relationship between vaginal microbiota and host genetics and their impact on immune response and farrowing traits in commercial gilts. J. Anim. Breed. Genet., 137: 84–102. Search in Google Scholar

Scharek L., Altherr B.J., Tölke C., Schmidt M.F.G. (2007). Influence of the probiotic Bacillus cereus var. Toyoi on the intestinal immunity of piglets. Vet. Immunol. Immunopathol., 120: 136–147. Search in Google Scholar

Schmidt K.H., Kühnemund O., Köhler W. (1987). A screening of streptococci freshly isolated from human and animal sources for binding of human IgG. Zentralblatt für Bakteriologie, Mikrobiologie, und Hygiene. Series A: Medical Microbiology, Infectious Diseases, Virology, Parasitology, 265: 420–429. Search in Google Scholar

Seura T., Fukuwatari T. (2020). Differences in gut microbial patterns associated with salivary biomarkers in young Japanese adults. Biosci. Microb. Food Health, 39: 243–249. Search in Google Scholar

Sha Y., Hu J., Shi B., Dingkao R., Wang J., Li S., Zhang W., Luo Y., Liu X. (2020). Characteristics and functions of the rumen microbial community of cattle-yak at different ages. BioMed Res. Int., 2020: e3482692. Search in Google Scholar

Shabana I.I., Albakri N.N., Bouqellah N.A. (2021). Metagenomic investigation of faecal microbiota in sheep and goats of the same ages. J. Taibah Univ. Sci., 15: 1–9. Search in Google Scholar

Shakya M., Lo C.C., Chain P.S.G. (2019). Advances and challenges in metatranscriptomic analysis. Front. Genet., 10.10.3389/fgene.2019.00904677426931608125 Search in Google Scholar

Shan T., Li L., Simmonds P., Wang C., Moeser A., Delwart E. (2011). The fecal virome of pigs on a high-density farm. J. Virol., 85: 11697–11708. Search in Google Scholar

Sheldon I.M., Cronin J., Goetze L., Donofrio G., Schuberth H.-J. (2009). Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod., 81: 1025–1032. Search in Google Scholar

Sheldon I.M., Cronin J.G., Healey G.D., Gabler C., Heuwieser W., Streyl D., Bromfield J.J., Miyamoto A., Fergani C., Dobson H. (2014). Innate immunity and inflammation of the bovine female reproductive tract in health and disease. Reproduction (Cambridge, England), 148: R41–51. Search in Google Scholar

Silvestre F.T., Bartolome J.A., Kamimura S., Arteche A.C., Pancarci S.M., Trigg T., Thatcher W.W. (2009). Postpartum suppression of ovarian activity with a Deslorelin implant enhanced uterine involution in lactating dairy cows. Anim. Reprod. Sci., 110: 79–95. Search in Google Scholar

Singh B., Bhat T.K., Kurade N.P., Sharma O.P. (2008). Metagenomics in animal gastrointestinal ecosystem: A microbiological and biotechnological perspective. Indian J. Microbiol., 48: 216–227. Search in Google Scholar

Sirota I., Zarek S.M., Segars J.H. (2014). Potential influence of the microbiome on infertility and assisted reproductive technology. Semin. Reprod. Med., 32: 35–42. Search in Google Scholar

Söllinger A., Tveit A.T., Poulsen M., Noel S.J., Bengtsson M., Bernhardt J., Frydendahl Hellwing A.L., Lund P., Riedel K., Schleper C., Højberg O., Urich T. (2018). Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. MSystems, 3: e00038-18. Search in Google Scholar

Sorge U.S., Binger E.M., Schefers J., Plummer P.J. (2019). Short communication: Metagenomic evaluation of skin biopsies of udder sores in dairy cows. J. Dairy Sci., 102: 11470–11475. Search in Google Scholar

Stephen C.P., Johnson W.H., Leblanc S.J., Foster R.A., Chenier T.S. (2019). The impact of ecbolic therapy in the early postpartum period on uterine involution and reproductive health in dairy cows. J. Vet. Med. Sci., 81: 491–498. Search in Google Scholar

Suryawanshi P.R., Badapanda C., Singh K.M., Rathore A. (2019). Exploration of the rumen microbial diversity and carbohydrate active enzyme profile of black Bengal goat using metagenomic approach. Anim. Biotechnol., DOI:10.1080/10495398.2019.160948910.1080/10495398.2019.160948931081473 Search in Google Scholar

Svennesen L., Nielsen S.S., Mahmmod Y.S., Krömker V., Pedersen K., Klaas I.C. (2019). Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. J. Dairy Sci., 102: 629–639. Search in Google Scholar

Takhampunya R., Korkusol A., Pongpichit C., Yodin K., Rungrojn A., Chanarat N., Promsathaporn S., Monkanna T., Thaloengsok S., Tippayachai B., Kumfao N., Richards A.L., Davidson S.A. (2019). Metagenomic approach to characterizing disease epidemiology in a disease-endemic environment in Northern Thailand. Front. Microbiol., 10: 00319. Search in Google Scholar

Thames H.T., Theradiyil Sukumaran A. (2020). A review of Salmonella and Campylobacter in broiler meat: emerging challenges and food safety measures. Foods, 9: 776. Search in Google Scholar

Thoetkiattikul H., Mhuantong W., Laothanachareon T., Tangphatsornruang S., Pattarajinda V., Eurwilaichitr L., Champreda V. (2013). Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr. Microbiol., 67: 130–137. Search in Google Scholar

Tosaki K., Kojima H., Akama S., Ootake Y., Inoue K., Katsuda K., Shibahara T. (2018). Bovine esophageal and glossal ulceration associated with Pseudomonas aeruginosa and Fusobacterium spp. in a 10-month-old Holstein heifer. J. Vet. Med. Sci., 80: 1174–1178. Search in Google Scholar

Underwood W.J., Blauwiekel R., Delano M.L., Gillesby R., Mischler S.A., Schoell A. (2015). Chapter 15 – Biology and diseases of ruminants (sheep, goats, and cattle). In: Laboratory Animal Medicine, 3rd edition, J.G. Fox, L.C. Anderson, G.M. Otto, K.R. Pritchett-Corning, M.T. Whary (eds.). Academic Press, pp. 623–694. Search in Google Scholar

Uruburu F. (2003). History and services of culture collections. Int. Microbiol.: The Official Journal of the Spanish Society for Microbiology, 6: 101–103. Search in Google Scholar

Uyeno Y., Shigemori S., Shimosato T. (2015). Effect of probiotics/prebiotics on cattle health and productivity. Microb. Environ., 30: 126–132. Search in Google Scholar

Uzal F.A., Vidal J.E., McClane B.A., Gurjar A.A. (2010). Clostridium perfringens toxins involved in mammalian veterinary diseases. Open Toxinol. J., 2: 24–42. Search in Google Scholar

Verdier-Metz I., Gagne G., Bornes S., Monsallier F., Veisseire P., Delbès-Paus C., Montel M.- C. (2012). Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl. Environ. Microbiol., 78: 326–333. Search in Google Scholar

Wang Y., Ametaj B.N., Ambrose D.J., Gänzle M.G. (2013). Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici. BMC Microbiol., 13: 19. Search in Google Scholar

Xing S.-C., Huang C.-B., Wu R.-T., Yang Y.-W., Chen J.-Y., Mi J.-D., Wu Y.-B., Wang Y., Liao X.-D. (2021). Breed differences in the expression levels of gga-miR-222a in laying hens influenced H2S production by regulating methionine synthase genes in gut bacteria. Microbiome, 9: 177. Search in Google Scholar

Xu L., Bickhart D.M., Cole J.B., Schroeder S.G., Song J., Tassell C.P.V., Sonstegard T.S., Liu G.E. (2015). Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol. Biol. Evol., 32: 711–725. Search in Google Scholar

Xue M.-Y., Sun H.-Z., Wu X.-H., Liu J.-X., Guan L.L. (2020). Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome, 8: 64. Search in Google Scholar

Yang S., Rothman R.E. (2004). PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infec. Dis., 4: 337–348. Search in Google Scholar

Zhang L., Li L., Sha G., Liu C., Wang Z., Wang L. (2020). Aerobic composting as an effective cow manure management strategy for reducing the dissemination of antibiotic resistance genes: An integrated meta-omics study. J. Hazard. Mat., 386: 121895. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo