[Abolfathi M., Hajimoradloo A., Ghorbani R., Zamani A. (2012). Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp. Biochem. Physiol. A, 161: 166–173.]Search in Google Scholar
[Aebi H. (1984). Catalase in vitro. Method. Enzymol., 105: 121–126.]Search in Google Scholar
[Ali M., Nicieza A., Wootton R.J. (2003). Compensatory growth in fishes: a response to growth depression. Fish Fisheries, 4: 147–190.]Search in Google Scholar
[Ashouri G., Mahboobi-Soofiani N., Hoseinifar S.H., Mozanzadeh M.T., Mani A., Khosravi A., Carnevali O. (2020). Compensatory growth, plasma hormones and metabolites in juvenile Siberian sturgeon (Acipenser baerii, Brandt 1869) subjected to fasting and re-feeding. Aquacult. Nutr., 26: 400–409.]Search in Google Scholar
[Baras E., Jobling M. (2002). Dynamics of intracohort cannibalism in cultured fish. Aquacult. Res., 33: 461–479.]Search in Google Scholar
[Bavcevic L., Klanjscek T., Karamarko V., Anicic I., Legovic T. (2010). Compensatory growth in gilthead sea bream (Sparus aurata) compensates weight, but not length. Aquaculture, 301: 57–63.]Search in Google Scholar
[Bélanger F., Blier P.U., Dutil J.D. (2002). Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). J. Fish Biol., 26: 121–128.]Search in Google Scholar
[Bertucci J.I., Blanco A.M., Sundarrajan L., Rajeswari J.J., Velasco C., Unniappan S. (2019). Nutrient regulation of endocrine factors influencing feeding and growth in fish. Front. Endocrinol., 10: 83.]Search in Google Scholar
[Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.]Search in Google Scholar
[Buege J.A., Aust S.D. (1978). Microsomal lipid peroxidation methods. Method. Enzymol., 52: 302–310.]Search in Google Scholar
[Cara B., Moyano F.J., Zambonino Infante J.L., Fauvel C. (2007). Trypsin and chymotrypsin as indicators of nutritional status of postweaned sea bass larvae. J. Fish Biol., 70: 1798–1808.]Search in Google Scholar
[Caruso G., Denaro M.G., Caruso R., Genovese L., Mancari F., Maricchiolo G. (2012). Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some haematological, biochemical and non specific immune parameters. Marine Environ. Res., 81: 18–25.]Search in Google Scholar
[Congleton J., Wagner T. (2006). Blood-chemistry indicators of nutritional status in juvenile salmonids. J. Fish Biol., 69: 473–490.]Search in Google Scholar
[Dar S.A., Srivastava P.P., Varghese T., Gupta S., Gireesh-Babu P. (2018). Effects of starvation and refeeding on expression of ghrelin and leptin gene with variations in metabolic parameters in Labeo rohita fingerlings. Aquaculture, 484: 219–227.]Search in Google Scholar
[Dar S.A., Srivastava P.P., Varghese T., Nazir M.U., Gupta S., Krishna G. (2019). Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings subjected to starvation and refeeding. Gene, 692: 94–101.]Search in Google Scholar
[Davis K.B., Gaylord T.G. (2011). Effect of fasting on body composition and responses to stress in sunshine bass (Morone chrysops × Morone saxatilis). Comp. Biochem. Physiol. A, 158: 30–36.]Search in Google Scholar
[Dehghani R., Oujifard A., Mozanzadeh M.T., Morshedi V., Bagheri D. (2020). Effects of dietary taurine on growth performance, digestive enzymes activities and skin mucosal immune responses in yellowfin seabream, Acanthopagrus latus. Aquaculture, 517: 734–795.]Search in Google Scholar
[Erlanger B.F., Kokowsky N., Cohen W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archiv. Biochem. Biophys., 95: 271–278.]Search in Google Scholar
[Eroldoğan O.T., Kumlu M., Kiris G.A., Sezer B. (2006). Compensatory growth response of Sparus aurata following different starvation and refeeding protocols. Aquacult. Nutr., 12: 203–210.]Search in Google Scholar
[Eroldoğan O.T., Suzer C., Taşbozan O., Tabakoğlu S. (2008). The effects of rate-restricted feeding regimes in cycles on digestive enzymes of gilthead sea-bream, Sparus aurata. Turk. J. Fish. Aquat. Sci., 8: 49–54.]Search in Google Scholar
[Favero G.C., Gimbo R.Y., Montoya L.N.F., Carneiro D.J., Urbinati E.C. (2020). A fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth. Aquaculture, 524: 735242.]Search in Google Scholar
[Furné M., Morales A.E., Trenzado C.E., Garcĺa-Gallego M., Hidalgo M.C., Domezain A., Rus A.S. (2012). The metabolic effects of prolonged starvation and re-feeding in sturgeon and rainbow trout. J. Comp. Physiol. B, 182: 63–76.]Search in Google Scholar
[Gawlicka A., Parent B., Horn M.H., Ross N., Opstad I., Torrissen O.J. (2000). Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture, 184: 303–314.]Search in Google Scholar
[Gaylord T.G., Gatlin D.M. (2001). Dietary protein and energy modifications to maximize compensatory growth of channel catfish (Ictalurus punctatus). Aquaculture, 194: 337–348.]Search in Google Scholar
[Gisbert E., Fernández I., Alvaez-González C.A. (2011). Prolonged feed deprivation does not permanently compromise digestive function in migrating European glass eels Anguilla anguilla. J. Fish Biol., 78: 580–592.]Search in Google Scholar
[Gisbert E., Mozanzadeh M.T., Kotzamanis Y., Estevez A. (2016). Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture, 462: 92–100.]Search in Google Scholar
[Gisbert E., Nolasco H., Solovyev M. (2018). Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture, 487: 102–108.]Search in Google Scholar
[Harpaz S., Hakim Y., Slosman T., Barki A., Karplus I., Eroldoğan O.T. (2005). Effects of different feeding levels during day and/or night on growth and brush border enzyme activity in juvenile Lates calcarifer fish reared in freshwater recirculating tanks. Aquaculture, 248: 325–335.]Search in Google Scholar
[Henry M., Gasco L., Piccolo G., Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol., 203: 1–22.]Search in Google Scholar
[Jaroli D., Sharma B., (2005). Effect of organophosphate insecticide on the organic constituents in liver of Channa punctatuus. Asian J. Exp. Sci., 19: 121–129.]Search in Google Scholar
[Jobling M. (2010) Are compensatory growth and catch-up growth two sides of the same coin? Aquacult. Int., 18: 501–510.]Search in Google Scholar
[Jobling M., Johansen S.J.S. (1999). The lipostat, hyperphagia and catch-up growth. Aquacult. Res., 30: 473–478.]Search in Google Scholar
[Krogdahl A., Bakke-McKellep A.M. (2005). Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A, 141: 450–460.]Search in Google Scholar
[Li Z.H., Xie S., Wang J.X., Chen D.Q. (2007). Effects of intermittent starvation on growth and some digestive enzymes in the shrimp Macrobrachium nipponense. J. Fish. China, 31: 456–462.]Search in Google Scholar
[Liu X., Xia J., Pang H., Yue G. (2017). Who eats whom, when and why? Juvenile cannibalism in fish Asian Seabass. Aquacult. Fish., 2: 1–9.]Search in Google Scholar
[Mattila J., Koskela J., Pirhonen J. (2009). The effect of the length of repeated feed deprivation between single meals on compensatory growth of pikeperch Sander lucioperca. Aquaculture, 296: 65–70.]Search in Google Scholar
[McCord J.M., Fridovich I. (1969). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.]Search in Google Scholar
[McCue M.D. (2010). Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A, 156: 1–18.]Search in Google Scholar
[Mohapatra S., Chakraborty T., Reza M.A.N., Shimizu S., Matsubara T., Ohta K. (2017). Short-term starvation and realimentation helps stave off Edwardsiella tarda infection in red sea bream (Pagrus major). Comp. Biochem. Physiol. B, 206: 42–53.]Search in Google Scholar
[Morales A.E., Pérez-Jiménez A., Hidalgo M.C., Abellán E., Cardenete G. (2004). Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. C, 139: 153–161.]Search in Google Scholar
[Mozanzadeh M.T., Marammazi J.G., Yaghoubi M., Agh N., Pagheh E., Gisbert E. (2017 a). Macronutrient requirements of silvery black porgy (Sparidentex hasta): a comparison with other farmed sparid species. Fishes, 2: 5.10.3390/fishes2020005]Search in Google Scholar
[Mozanzadeh M.T., Marammazi J.G., Yaghoubi M., Yavari V., Agh N., Gisbert E. (2017 b). Somatic and physiological responses to cyclic fasting and re-feeding periods in sobaity sea bream (Sparidentex hasta, Valenciennes 1830). Aquacult. Nutr., 23: 181–191.10.1111/anu.12379]Search in Google Scholar
[Mozanzadeh M.T., Zabayeh Najafabadi M., Torfi M., Safari O., Oosooli R., Mehrjooyan S., Pagheh E., Hoseini S.J., Saghavi H., Monem J., Gisbert E. (2020). Compensatory growth of sobaity (Sparidentex hasta) and yellowfin seabreams (Acanthopagrus latus) relative to feeding rate during nursery phase. Aquacult. Nutr., 27: 468–476.]Search in Google Scholar
[Navarro I., Gutierrez J. (1995). Fasting and starvation. In: Biochemistry and molecular biology of fishes, Hochachka P.W., Mommsen T.P. (eds). Elsevier, Amsterdam, pp. 393–434.]Search in Google Scholar
[Noguchi T., Cantor A.H., Scott M.L. (1973). Mode of action of selenium and vitamin E in prevention of exudative diathesis in chicks. J. Nutr., 103: 1502–1511.]Search in Google Scholar
[Oh S.Y., Noh C.H., Cho S.H. (2007). Effect of restricted feeding regimes on compensatory growth and body composition of red sea bream, Pagrus major. J. World Aquacult. Soc., 38: 443–449.]Search in Google Scholar
[Oh S.Y., Kim M.S., Kwon J.Y., Venmathi Maran B.A. (2013). Effects of feed restriction to enhance the profitable farming of blackhead seabream (Acanthopagrus schlegelii schlegelii) in sea cages. Ocean Sci. J., 48: 263–268.]Search in Google Scholar
[Park I., Hur J.W., Choi J.W. (2012). Hematological responses, survival, and respiratory exchange in the olive flounder, Paralichthys olivaceus, during starvation. Asian Aus. J. Anim. Sci., 25: 1276–1284.]Search in Google Scholar
[Pascual P., Pedrajas J.R., Toribio F., López-Barea J., Peinado J. (2003). Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem. Biol. Interact., 145: 191–199.]Search in Google Scholar
[Peres H., Santos S., Oliva-Teles A. (2011). Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent re-feeding. Aquaculture, 318: 384–388.]Search in Google Scholar
[Pérez-Jiménez A., Guedes M.J., Morales A.E., Oliva-Teles A., (2007). Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture, 265: 325–335.]Search in Google Scholar
[Pérez-Jiménez A., Cardenete G., Hidalgo M.C., García-Alcázar A., Abellán E., Morales A.E. (2012). Metabolic adjustments of Dentex dentex to prolonged starvation and re-feeding. Fish Physiol. Biochem., 38: 1145–1157.]Search in Google Scholar
[Rodríguez A., Gisbert E., Castelló-Orvay F. (2005). Nutritional condition of Anguilla anguilla starved at various salinities during the elver phase. J. Fish Biol., 67: 521–534.]Search in Google Scholar
[Rueda F.M., Martinez F.J., Zamora S., Kentouri M., Divanach P. (1998). Effect of fasting and refeeding on growth and body composition of red porgy (Pagrus pagrus L.). Aquacult. Res., 29: 447–452.]Search in Google Scholar
[Sakakura Y., Tsukamoto K. (1998). Effects of density, starvation, and size difference on aggressive behaviour in juvenile yellowtails (Seriola quinqueradiata). J. Appl. Ichthyol., 14: 9–13.]Search in Google Scholar
[Tamadoni R., Nafisi Bahabadi M., Morshedi V., Bagheri D., Mozanzadeh M.T. (2020). Effect of short term fasting and refeeding on growth, digestive enzyme activities and antioxidant defense in yellowfin seabream, Acanthopagrus latus (Houttuyn, 1782). Aquacult. Res., 51: 1437–1445.]Search in Google Scholar
[Tian X.L., Qin J.G. (2004). Effects of previous ration restriction on compensatory growth in barramundi (Lates calcarifer). Aquaculture, 235: 273–283.]Search in Google Scholar
[Triebenbach S.P., Smoker W.W., Beckman B.R., Focht R. (2009). Compensatory growth after winter food deprivation in hatcheryproduced Coho salmon and Chinook salmon smolts. North Am. Jo. Aquacult., 71: 384–399.]Search in Google Scholar
[Viegas I., Caballero-Solares A., Rito J., Giralt M., Pardal M.A., Metón I., Jones J.G., Baanante I.V. (2014). Expressional regulation of key hepatic enzymes of intermediary metabolism in European seabass (Dicentrarchus labrax) during food deprivation and refeeding. Comp. Biochem. Physiol. A, 174: 38–44.]Search in Google Scholar
[Waagbø R., Jørgensen S.M., Timmerhaus G., Breck O., Olsvik P.A. (2017). Short-term starvation at low temperature prior to harvest does not impact the health and acute stress response of adult Atlantic salmon. Peer J., 5: e3273.]Search in Google Scholar
[Won E.T., Borski R.J. (2013). Endocrine regulation of compensatory growth in fish. Front. Endocrinol., 4: 74.]Search in Google Scholar
[Worthington Biochemical Corporation (1991). Worthington Enzyme Manual: Enzymes, Enzyme Reagents, Related Biochemical. Worthington Biochemical Corp., Freehold, New Jersey.]Search in Google Scholar
[Xiao J.-X., Zhou F., Yin N., Zhou J., Gao S., Li H., Shao Q.-J., Xu J. (2013). Compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii, with cyclical feed deprivation and refeeding. Aquacult. Res., 44: 1045–1057.]Search in Google Scholar
[Yang S., He K., Yan T., Wu H., Zhou J., Zhao L., Wang Y., Gong K. (2019). Effect of starvation and refeeding on oxidative stress and antioxidant defenses in Yangtze sturgeon (Acipenser dabryanus). Fish Physiol. Biochem., 45: 987–995.]Search in Google Scholar
[Yarmohammadi M., Pourkazemi M., Kazemi R., Pourdehghani M., Hassanzadeh M., Azizzadeh L. (2015). Effects of starvation and re-feeding on some hematological and plasma biochemical parameters of juvenile Persian sturgeon, Acipenser persicus Borodin, 1897. Caspian J. Environ. Sci., 13: 129–140.]Search in Google Scholar
[Yilmaz H.A., Eroldoğan O.T. (2011). Combined effects of cycled starvation and feeding frequency on growth and oxygen consumption of gilthead seabream, Sparus aurata. J. World Aquacult. Soc., 42: 522–529.]Search in Google Scholar
[Zeng L.Q., Li F.J., Li X-M., Cao Z.D., Fu S.J., Zhang Y.G. (2012). The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen). Comp. Biochem. Physiol. A, 162: 200–211.]Search in Google Scholar
[Zhang X.D., Zhu Y.F., Cai L.S., Wu T.X. (2008). Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture, 280: 136–139.]Search in Google Scholar
[Zheng Y., Cheng X., Tang H. (2015). Effects of starvation and refeeding on digestive enzyme activity of Megalobrama pellegrini. Adv. J. Food Sci. Technol., 7: 230–234.]Search in Google Scholar
[Zheng J.L., Zhu Q., Shen B., Zeng L., Zhu A.Y., Wu C.W. (2016). Effects of starvation on lipid accumulation and antioxidant response in the right and left lobes of liver in large yellow croaker Pseudosciaena crocea. Ecol. Indicat., 66: 269–274.]Search in Google Scholar
[Ziheng F., Xiangli T., Shuanglin D. (2017). Effects of starving and refeeding strategies on the growth performance and physiological characteristics of the juvenile tongue sole (Cynoglossus semilaevis). J. Ocean Univ. China, 16: 517–524.]Search in Google Scholar