Cite

Abd-Elall A. M. M., Mohamed M. E. M., Awadallah M.A.I. (2009). Potential airborne microbial hazards for workers on dairy and beef cattle farms in Egypt. Vet. Ital., 45: 275–285. Search in Google Scholar

Akinmusire O.O., El-Yuguda A.D., Musa J.A., Oyedele O.A., Sulyok M., Somorin Y.M., Ezekiel C.N., Krska R. (2019). Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Res., 35: 149–155. Search in Google Scholar

Bakutis B., Monstviliene E., Januskeviciene G. (2004). Analyses of airborne contamination with bacteria, endotoxins and dust in livestock barns and poultry houses. Acta Vet. Brno., 73: 283–289. Search in Google Scholar

Banhazi T. M., Seedorf J., Laffrique M., Rutley D. L. (2008). Identification of the risk factors for high airborne particle concentrations in broiler buildings using statistical modelling. Biosyst. Engineer., 101: 100–110. Search in Google Scholar

Budzińska K., Szejniuk B., Jurek A., Traczykowski A., Michalska M., Berleć K. (2014). Microbial contamination of the air in the building for pigs. Probl. Agric. Eng., 86: 91–100. Search in Google Scholar

Cabral J.P.S. (2010). Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health, 7: 3657–3703. Search in Google Scholar

Cambra - López M., Aarnink A.J.A., Zhao Y., Calvet S., Torres A.G. (2010). Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut., 158: 1–17. Search in Google Scholar

Chang C.W., Chung H., Huang C.F., Su H.J.J. (2001). Exposure assessment to airborne endotoxin, dust, ammonia hydrogen sulfide and carbon dioxide in open style swine houses. Ann. Occup. Hyg., 45: 457–465. Search in Google Scholar

Chmielowiec-Korzeniowska A., Tymczyna L., Pyrz M., Trawińska B., Abramczyk K., Dobrowolska A. (2018). Occupational exposure level of pig facility workers to chemical and biological pollutants. Ann. Agric. Environ. Med., 25: 262–267. Search in Google Scholar

Cotta M.A., Whitehead T.R., Zeltwanger R.L. (2003). Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environ. Microbiol., 5: 737–745. Search in Google Scholar

Donham K.J. (1991). Association of environmental air contaminants with disease and productivity in swine. Am. J. Vet. Res., 52: 1723–1730. Search in Google Scholar

Dungan R.S. (2010). Board-invited review: Fate and transport of bioaerosols associated with livestock operations and manures. J. Animal Sci., 88: 3693–3706. Search in Google Scholar

Dungan R.S., Leytem A.B. (2009). Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World J. Microbiol. Biotechnol., 25: 1505–1518. Search in Google Scholar

Dutkiewicz J., Górny R.L. (2002). Biological factors harmful to health – classification and exposure assessment criteria (in Polish). Med. Pracy, 53: 29–39. Search in Google Scholar

Dutkiewicz J., Cisak E., Sroka J., Wójcik-Fatla A., Zając V. (2011). Biological agents as occupational hazards – selected issues. Ann. Agric. Environ. Med., 18: 286–293. Search in Google Scholar

Friesea A., Schulz J., Hoehlea L., Fetsch A., Tenhagen B.-A., Hartung J., Roes- ler U. (2012). Occurrence of MRSA in air and housing environment of pig barns. Vet. Microbiol., 158: 129–135. Search in Google Scholar

Górny R.L., Cyprowski M., Ławniczek-Wałczyk A., Gołofit-Szymczak M., Zapór L. (2011). Biohazards in the indoor environment – a role for threshold limit values in exposure assessment. In: The management of indoor air quality, Dudzińska M.R. (ed.). CRC Press – Taylor and Francis Group, London. Search in Google Scholar

Hamid A., Ahmad A.S., Khan N. (2018). Respiratory and other health risks among poultry – farm workers and evaluation of management practices in poultry farms. Brazilian J. Poultry Sci., 20: 111–118. Search in Google Scholar

Hartung J., Schulz J. (2011). Occupational and environmental risks caused by bio-aerosols in and from farm animal houses. Agric. Engin. Intern.,13: 1–8. Search in Google Scholar

Hölzel C.S., Schwaiger K., Harms K., Küchenhoff H., Kunz A., Meyer K., Müller C., Bauer J. (2010). Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria. Environ. Res., 110: 318–326. Search in Google Scholar

Hutchison M.L., Walters L.D., Avery S.M., Munro F., Moore A. (2005). Analyses of livestock production, waste storage and pathogen levels and prevalences in farm manures. Appl. Environ. Microbiol., 71: 1231–1236. Search in Google Scholar

Kanora A., Maes D. (2009). The role of mycotoxins in pig reproduction: a review. Veterinarni Med., 54: 565–576. Search in Google Scholar

Keyvan M.E., Yurdakul O., Demirtas A., Yalcin H., Bilgen N. (2020). Identification of methicillin-resistant Staphylococcus aureus in bulk tank milk. Food Sci. Technol., 40: 150–156. Search in Google Scholar

Kitai S., Shimizu A., Kawano J., Sato E., Nakano C., Uji T., Kitagawa H. (2005) Characterization of methicillin-resistant Staphylococcus aureus isolated from retail raw chicken meat in Japan. J. Vet. Med. Sci., 67: 107–110. Search in Google Scholar

Kołacz R., Bodak E. (2000). Acute phase proteins as a criterium of animal welfare evaluation. Zesz. Nauk. AR Wrocław, 390: 23–31. Search in Google Scholar

Kołacz R., Dobrzański Z. (2006). Hygiene and welfare of farm animals (in Polish). Publisher University of Life Sciences in Wroclaw. Search in Google Scholar

Kostadinova G., Petkov G., Denev S., Miteva Ch., Stefanova R., Penev T. (2014). Microbial pollution of manure, litter, air and soil in a poultry farm. Bulgarian J. Agric. Sci., 20: 56–65. Search in Google Scholar

Kullik K., Brosig B., Kersten S., Valenta H., Diesing A.K., Panther P., Reinhardt N., Kluess J., Rothkötter H.J., Breves G., Dänicke S. (2013). Interactions between the Fusarium toxin deoxynivalenol and lipopolysaccharides on the in vivo protein synthesis of acute phase proteins, cytokines and metabolic activity of peripheral blood mononuclear cells in pigs. Food Chem. Toxicol., 57: 11–20. Search in Google Scholar

Kumari P., Cheolwoon W., Naomichi Y., Hong-Lim Ch. (2016). Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons. Sci. Rep., 6: 1–11. Search in Google Scholar

Lawniczek-Walczyk A., Górny R.L., Golofit-Szymczak M., Niesler A., Wlazlo A. (2013). Occupational exposure to airborne microorganisms, endotoxins and β-glucans in poultry houses at different stages of the production cycle. Ann. Agric. Environ. Med., 20: 259–268. Search in Google Scholar

Lee J. (2006). Occurrence of methicillin-resistant Staphylococcus aureus strains from cattle and chicken, and analyses of their mecA, mecR1 and mecI genes. Vet. Microbiol., 114: 155–159. Search in Google Scholar

Li m J.Y., Yoon J., Hovde C.J. (2010). A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol., 20: 5–14. Search in Google Scholar

Linlin J., Jianlong Z., Jinxiu T., Meng L., Xiaoyu Z., Hongwei Z., Xin Y., Youzhi L., Tao F., Xingxiao Z. (2018). Analyses of aerosol concentrations and bacterial community structures for closed cage broiler houses at different broiler growth stages in winter. J. Food Protect., 81: 1557–1564. Search in Google Scholar

Loera-Muro A., Ramírez-Castillo F.Y., Avelar-González F.J., Guerrero-Barrera A.L. (2015). Porcine respiratory disease complex and biofilms. J. Bacteriol. Parasitol., 6: 247–253. Search in Google Scholar

Lonc E., Plewa K. (2010). Microbiological air contamination in poultry houses. Polish J. Environ. Stud., 19: 15–19. Search in Google Scholar

Lu J., Sanchez S., Hofacre C., Maurer J. J., Harmon B. G., Lee M. D. (2003). Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl. Environ. Microbiol., 69: 901–908. Search in Google Scholar

Manyi-Loh C.E., Mamphweli S.N., Meyer E., Makaka G., Simon M., Okoh A.I. (2016). An overview of the control of bacterial pathogens in cattle manure. Int. J. Environ. Res. Public Health, 13: 843–852. Search in Google Scholar

Matković K., Vučemilo M., Vinković B., Seol B., Pavicić Z., Tofant A., Matković S. (2006). Effect of microclimate on bacterial count and airborne emission from dairy barns on the environment. An. Agric. Environ. Med., 13: 149–154. Search in Google Scholar

May S., Romberger D. J., Poole J. A. (2012). Respiratory health effects of large animal farming environments. J. Toxicol. Environ. Health B. Crit. Rev., 15: 524–541. Search in Google Scholar

McEachran A.D., Blackwell B.R., Hanson J.D., Wooten K.J., Mayer G.D., Cox S.B., Smith P.N. (2015). Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ. Health Perspect., 123: 337–343. Search in Google Scholar

Murugesan G.R., Ledoux D.R., Naehrer K., Berthiller F., Applegate T.J., Grenier B., Schtzmayr G. (2015). Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Sci., 94: 1298–1315. Search in Google Scholar

Myszograj S., Puchalska E. (2012). Waste from poultry farming and slaughter – environmental hazards or raw material for energy production. Environ. Med., 15: 106–115. Search in Google Scholar

Nehme B., Létourneau V., Forster R.J., Veillette M., Duchaine C. (2008). Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings and assessment of the seasonal effect. Environ. Microbiol., 10: 665–675. Search in Google Scholar

Nikonorow E., Baraniak A., Gniadkowski M. (2013). Β-lactamase-mediated resistance in Enterobacteriaceae. Post. Mikrobiol., 52: 261–271. Search in Google Scholar

Nimmermark S., Lund V., Gustafsson G., Eduard W. (2009). Ammonia, dust and bacteria in welfare-oriented systems for laying hens. Ann. Agric. Environ. Med., 16: 103–113. Search in Google Scholar

Normanno G., Corrente M., La Salandra G., Dambrosio A., Quaglia N.C., Parisi A., Greco G., Bellacicco A.L., Virgilio S., Celano G.V. (2007). Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product in Italy. Int. J. Food Micro-biol., 117: 219–222. Search in Google Scholar

Oporto B., Esteban J.I., Aduriz G., Juste R.A., Hurtado A. (2008). Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli in healthy cattle, sheep and swine herds in Northern Spain. Zoonoses Public Health, 55: 73–81. Search in Google Scholar

Oppliger A., Charrière N., Droz P. O., Rinsoz T. (2008). Exposure to bioaerosols in poultry houses at different stages of fattening; use of real time PCR for airborne bacterial quantification. Ann. Occup. Hyg., 52: 405–412. Search in Google Scholar

Pejsak Z. (2007). Protection of pigs’ health (in Polish). Pol. Wyd. Roln. Poznań. Search in Google Scholar

Peles F., Wagner M., Varga L., Hein I., Rieck P., Gutser K., Keresztúri P., Kardos G., Turcsányi I., Béri B., Szab ó A. (2007). Characterization of Staphylococcus aureus strains isolated from bovine milk in Hungary. Int. J. Food Microbiol., 118: 186–193. Search in Google Scholar

Plewa-Tutaj K., Pietras-Szewczyk M., Lonc E. (2014). Attempt to estimate spatial distribution of microbial air contamination on the territory and in proximity of a selected poultry farm. Och. Srod., 36: 21–28. Search in Google Scholar

Popescu S., Borda C., Diugan E. A., Oros D. (2014). Microbial air contamination in indoor and outdoor environment of pig farms. Anim. Sci. Biotechnol., 47: 182–187. Search in Google Scholar

Predicala B.Z., Urban J.E., Maghirang R.G., Jerez S.B., Goodband R.D. (2002). Assessment of bioaerosols in swine barns by filtration and impaction. Curr. Microbiol., 44: 136–140. Search in Google Scholar

Ropek D., Frączek K. (2016). Microbiological air quality in farm buildings. Environ. Med., 19: 16–22. Search in Google Scholar

Roque K., Lim G. D., Jo J. H., Shin K. M., Song E. S., Gautam R., Kim C. Y., Lee K., Shin S., Yoo H. S., Heo Y., Kim H. A. (2016). Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings. J. Vet. Sci., 17: 531–538. Search in Google Scholar

Roque K., Shin K. M., Jo J. H., Lim G. D., Song E. S., Shin S. J., Gautam R., Lee J. H., Kim Y. G., Cho A. R., Kim C. Y., Kim H. J., Lee M. S., Oh H. G., Lee B. C., Kim J. H., Kim K. H., Jeong H. K., Kim H. A., Heo Y. (2018). Association between endotoxin levels in dust from indoor swine housing environments and the immune responses of pigs. J. Vet. Sci., 19: 331–338. Search in Google Scholar

Sabino R., Veríssimo C., Viegas C., Viegas S., Brandão J., Alves-Correia M., Borrego L.-M., Clemons K.V., Stevens D.S., Richardson M. (2019). The role of occupational Aspergillus exposure in the development of diseases. Med. Mycol., 57: 196–205. Search in Google Scholar

Saleh M., Seedorf J., Hartung J. (2005). Influence of animal age and season on bio-aerosol concentrations in a broiler house. Proc. ISAH 2005, Warsaw, Poland. Search in Google Scholar

Schierl R., Heise A., Egger U., Schneider F., Eichelser R., Neser S., Nowak D. (2007). Endotoxin concentration in modern animal houses in southern Bavaria. Ann. Agric. Environ. Med., 14: 129–136. Search in Google Scholar

Seedorf J., Hartung J., Schröder M., Linkert K.H., Philips V.R., Holden M.R., Sneath R.W., Short J.L., White R.P., Pedersen S., Takai H., Johnsen J.O., Metz J.H.M., Groot Koerkamp P.W.G., Unek G.H., Wathes C.M. (1998). Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in Northern Europe. J. Agric. Eng. Res., 70: 97–109. Search in Google Scholar

Skóra J., Matusiak K., Wojewódzki P., Nowak A., Sulyok M., Ligocka A., Okra-sa M., Herman J., Gutarowska B. (2016). Evaluation of microbiological and chemical contaminants in poultry farms. Int. J. Environ. Res. Public Health, 13: 1–16. Search in Google Scholar

Skórska C. (1991). Ocena skutków inhalacji zwierząt doświadczalnych alergenem otrzymanym z bakterii Acinetobacter calcoaceticus dokonana metodami immunologicznymi (in Polish). Med. Wiejska, 2, 138–149. Search in Google Scholar

Stuper-Szablewska K., Szablewski T., Nowaczewski S., Gornowicz E. (2018). Chemical and microbiological hazards related to poultry farming. Environ. Med., 21: 53–63. Search in Google Scholar

Szadkowska-Stańczyk I., Bródka K., Buczyńska A., Cyprowski M., Kozajda A., Sowiak M. (2010). Assessment of bioaerosol exposure of employees employed in intensive pig farming (in Polish). Med. Pracy., 61: 257–269. Search in Google Scholar

Szewczyk M., Czuba Z., Wiczkowski A., Hajdrowska B. (2019). Antibiotic resistance of Enterobacteriaceae isolated from food. Med. Weter., 75: 553–557. Search in Google Scholar

Tang Q., Kai H., Junze L., Sheng W., Dan S., Pengyuan D., Chunmei L. (2019). Fine particulate matter from pig house induced immune response by activating TLR4/MAPK/NF-κB pathway and NLRP3 inflammasome in alveolar macrophages. Chemosphere, 236: 124373. Search in Google Scholar

Truszczyński M., Pejsak Z. (2015). Zoonotic carriership of Salmonella spp. in swine (in Polish). Życie Wet., 90: 435–439. Search in Google Scholar

Tymczyna P., Bartecki P. (2007). Bioaerosols and bacterial endotoxins as risk factors in agriculture. Rocz. Nauk. Zoot., 34: 3–12. Search in Google Scholar

Viegas S., Faisca V.M., Dias H., Clérigo A., Carolino E., Viegas C. (2013). Occupational exposure to poultry dust and effects on the respiratory system in workers. J. Toxicol. Environ. Health A., 76: 230–239. Search in Google Scholar

Wassenaar T. M., Zimmermann K. (2018). Lipopolysaccharides in food, food supplements, and probiotics: Should we be worried? Eur. J. Microbiol. Immunol., 8: 63–69. Search in Google Scholar

Wasyl D., Hoszowski A., Zając M., Szulowski K. (2013). Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Front. Microbiol., 4: 1–12. Search in Google Scholar

Wegener H. C. (2003). Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol., 6: 439–445. Search in Google Scholar

World Health Organization (2014). World Health Organization: Antimicrobial resistance: global report on surveillance. Search in Google Scholar

Wójcik A., Chorąży Ł., Policht Ł., Mituniewicz T., Witkowska D., Iwańczuk-Czernik K., Sowińska J. (2010). Microbiological air pollution in the dairy cow barn kept in a free-standing system on deep litter (in Polish). Ekol. Tech., 18: 220–226. Search in Google Scholar

Yang W., Guo M., Liu G., Yu G., Wang P., Wang H., Chai T. (2018). Detection and analysis of fine particulate matter and microbial aerosol in chicken houses in Shandong Province, China. Poultry Sci., 97: 995–1005. Search in Google Scholar

Yao H. Q., Choi H. L., Lee J. H., Suresh A., Zhu K. (2010). Effect of microclimate on particulate matter, airborne bacteria and odorous compounds in swine nursery houses. J. Anim. Sci., 88: 3707–3714. Search in Google Scholar

Zhao Y., Aarnink A. J. A., De Jong M. C. M., Koerkamp P. W. G. (2014). Airborne microorganisms from livestock production systems and their relation to dust. Crit. Rev. Env. Sci. Tec., 44: 1071–1128. Search in Google Scholar

Zhu J. (2000). A review of microbiology in swine manure odor control. Agric. Ecosyst. Environ., 78: 93–106. Search in Google Scholar

Zucker B. A., Müller W. (2000). Species composition and sources of airborne Gram-negative bacteria in animal houses. Proc. Xth International Conference Animal Hygiene, 2–6.07.2000, Maastricht, The Netherlands. Search in Google Scholar

Żukiewicz-Sobczak W., Sobczak P., Krasowska E., Zwoliński J., Chmielewska-Badora J., Galińska E.M. (2013). Allergenic potential of moulds isolated from buildings. Ann. Agric. Environ. Med., 20: 500–503. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine