Acceso abierto

A Review on Bovine Mastitis with Special Focus on CD4 as a Potential Candidate Gene for Mastitis Resistance – A Review


Cite

Alan C., Jung M.D, Douglas S., Paauw M.D. (1998). Diagnosing HIV-related Disease using the CD4 Count as a guide. J. Gen. Intern. Med., 13:131-136.10.1046/j.1525-1497.1998.00031.xSearch in Google Scholar

Alhussien M.N., Dang A.K. (2018). Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World, 11(5): 562-577.10.14202/vetworld.2018.562-577Search in Google Scholar

Almaw G., Molla W., Melaku A. (2012). Incidence rate of clinical bovine mastitis in selected smallholder dairy farms in Gondar Town in Ethiopia. Ethiop. Vet. J., 16(1): 93–99.10.4314/evj.v16i1.8Search in Google Scholar

Almeida R.A., Calvinho L.F., Oliver, S.P. (1998). Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet. Micro., 61(1-2): 93-110.10.1016/S0378-1135(98)00172-2Search in Google Scholar

Ameh J.A., Tari L.S. (2000). Observation on the prevalence of caprine mastitis in relation to predisposing factors in Maiduguri. Small Rumin. Res., 35: 1-5.10.1016/S0921-4488(99)00047-4Search in Google Scholar

Ateya A.I., El-Seady Y.Y., Atwa S.M., Merghani B.H., Sayed N.A. (2016). Novel single nucleotide polymorphisms in lactoferrin gene and their association with mastitis susceptibility in Holstein cattle. GENETIKA, 48(1): 199-210.10.2298/GENSR1601199ASearch in Google Scholar

Bachaya H.A., Raza, M.A., Murtaza, S., Akbar, I.U.R. (2011). Subclinical Bovine Mastitis in Muzaffar Garh District of Punjab, Pakistan. J. Anim. Plant Sci., 21: 16-19.Search in Google Scholar

Banos G., Wall E., Coffey M., Bagnall, A., Gillespie S., Russell G., McNeilly T. (2013). Identification of Immune Traits Correlated with Dairy Cow Health, Reproduction and Productivity. PLoS ONE, 8(6): 65766.10.1371/journal.pone.0065766Search in Google Scholar

Bansal B.K., Hamann, J., Grabowski, T.N., Singh, K.B. (2005). Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. J. Dairy Res., 72(2): 144–152.10.1017/S0022029905000798Search in Google Scholar

Bialecki E., Macho F. E., Ivanov S., Paget C., Fontaine J. (2011) Spleen-resident CD4+ and CD4- CD8alpha- dendritic cell subsets differ in their ability to prime invariant natural killer T lymphocytes. PLoS One, 6: e26919.10.1371/journal.pone.0026919Search in Google Scholar

Bilal M.Q., Iqbal M.U., Muhammad G., Avais M., Sajid M.S. (2004). Factors affecting the prevalence of clinical mastitis in buffaloes around Faisalabad District. Pak. Intern. J. Agri. Bio., 6(1): 185-187.Search in Google Scholar

Boonyayatra S., Chaisri W. (2005). Incidence and prevalence of sub-clinical mastitis in smallholder dairy farms of Chiang Mai Province, Thailand. Chiang Mai Vet. J., 2: 25–30.Search in Google Scholar

Boscariol R., Pleasance J., Piedrafita D.M., Raadsma H.W., Spithill T.W. (2006). Identification of two allelic forms of ovine CD4 exhibiting a Ser183/Pro183 polymorphism in the coding sequence of domain 3. Vet. Immunol. Immunopathol., 113(3-4): 305-312.10.1016/j.vetimm.2006.05.015Search in Google Scholar

Bradley A.J., Green M.J. (2001). Etiology of clinical mastitis in six Somerset dairy herds. Vet. Res., 148: 683-686.10.1136/vr.148.22.683Search in Google Scholar

Brodzki P., Kostro A., Brodzki W., Wawron J., Marczuk Kurek Ł. (2015). Inflammatory cytokines and acutephase proteins concentrations in the peripheral blood and uterus of cows that developed endometritis during early postpartum. Theriogenology, 84:11-18.10.1016/j.theriogenology.2015.02.006Search in Google Scholar

Burton J.L., Erskine R.J. (2003). Immunity and mastitis some new ideas for an old disease. Vet. Clin. Food Anim. J., 19(1): 1-45.10.1016/S0749-0720(02)00073-7Search in Google Scholar

Burvenich C., Van M., Mehrzad J., Diez-Fraile A., Duchateau L. (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res., 34:521-564.10.1051/vetres:2003023Search in Google Scholar

Campbell J.R., Marshall R.T. (2016). Dairy Production and Processing: The Science of Milk and Milk Products: Waveland Press.Search in Google Scholar

Cao D., Jing X., Wang X., Liu H., Chen D. (2012). Dynamics of CD4+ lymphocytes in mouse mammary gland challenged with Staphylococcus aureus. Asian J. Anim. Vet. Adv., 7: 1041-1048.10.3923/ajava.2012.1041.1048Search in Google Scholar

Coulon J.B., Gasqui P., Barnouin J., Oliier A., Pradel P., Pomiès D. (2002). Effect of mastitis and related germs on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim. Res., 51(5): 383–393.10.1051/animres:2002031Search in Google Scholar

Dekkers J.C.M., Hospital F. (2002).The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Gen., 3: 22–3210.1038/nrg701Search in Google Scholar

Detilleux J.C., (2002). Genetic factors affecting susceptibility of dairy cows to udder pathogens. Vet. Immunol. Immunopathol., 88 103–110.10.1016/S0165-2427(02)00138-1Search in Google Scholar

Dieser S.A., Vissio C., Lasagno M.C., Bogni C.I., Larriestra A.J., Odierno L.M. (2014). Prevalence of pathogens causing subclinical mastitis in Argentinean dairy herds. Pak. Vet. J., 34(1): 124-126.Search in Google Scholar

Faramarz N., (2008). Principles of Immunophenotyping, in Hematopathology.Search in Google Scholar

Fareed K.S., Khalid H.M., Allah B.K., Shajeela A., Muhammad I.B., Mehmood-ul-Hasan, Muhammad A., Taseer A.K. (2015). Prevalence and economic losses of reproductive disorders and mastitis in buffaloes at Karachi, Pakistan. Indian J. Anim. Res., 389: 1-410.18805/ijar.8602Search in Google Scholar

Feil R., Fraga M.F. (2012). Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Gen., 13(2): 97.10.1038/nrg3142Search in Google Scholar

Fourichon C., Seegers H., Malher X. (2000). Effect of disease on reproduction in the dairy cow: a meta-analysis. Theriogenology, 53: 1729–1759.10.1016/S0093-691X(00)00311-3Search in Google Scholar

Gebreyohannes Y.T., Regassa F.G., Kelay B. (2010). Milk yield and associated economic losses in quarters with subclinical mastitis due to Staphylococcus aureus in Ethiopian crossbred dairy cows. Trop. Anim. Health Prod., 42: 925-931.10.1007/s11250-009-9509-2Search in Google Scholar

Gera S., Guha A. (2011). Assessment of acute phase proteins and nitric oxide as indicator of subclinical mastitis in Holstein × Haryana cattle. Ind. J. Anim. Sci., 81(10): 1029–1031.Search in Google Scholar

Gilmour A., Harvey J. (1990). Society for Applied Bacteriology Symposium Series. 19:147S166S.10.1111/j.1365-2672.1990.tb01805.xSearch in Google Scholar

Glass E.J., Preston P.M., Springbett A., Craigmile S., Kirvar E., Wilkie G., Brown C.D. (2005). Bos taurus and Bos indicus (Sahiwal) calves respond differently to infection with Theileria annulata and produce markedly different levels of acute phase proteins. Int. J. Para., 35(3):337-347.10.1016/j.ijpara.2004.12.006Search in Google Scholar

Goddard M.E., Hayes B.J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Gen., 10(6): 381-391.10.1038/nrg2575Search in Google Scholar

Gustafsson K., Germana S., Sundt T.M., Sachs D.H., LeGuern, C. (1993). Extensive allelic polymorphism in the CDR2-like region of the miniature swine CD4 molecule. J. Immunol., 151(3): 1365-1370.10.4049/jimmunol.151.3.1365Search in Google Scholar

Haas Y.D, Ouweltjes W., Napel J., Windig J., Jong G. (2008). Alternative traits for somatic cell counts as mastitis-indicators for genetic selection. J. Dairy Sci., 91: 2501-2511.10.3168/jds.2007-0459Search in Google Scholar

Hagnestam-Nielsen C., Ostergaard S. (2009). Economic impact of clinical mastitis in a dairy herd assessed by stochastic simulation using different methods to model yield losses. Animal, 3(2):315-328.10.1017/S1751731108003352Search in Google Scholar

Halasa T., Huijps K., Osteras O., Hogeveen H. (2007). Economic effects of bovine mastitis and mastitis management: A review. Vet. Quarterly, 29(1): 18–31.10.1080/01652176.2007.9695224Search in Google Scholar

Hameed K.G.A., Sender G., Korwin-Kossakowska A. (2007). Public health hazard due to mastitis in dairy cows. Anim. Sci. Pap. Rep., 25(2): 73–85.Search in Google Scholar

He Y., Chu Q., Ma P., Wang Y., Zhang Q., Sun D., Zhang Y., Yu Y. and Zhang Y., 2011. Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J. dairy res., 78(2): 242-249.10.1017/S002202991100014821435309Search in Google Scholar

Hennig B.J., Velez-Edwards D.R., Van Der Loeff M.F.S., Bisseye C., Edwards T.L., Tacconelli A., Novelli G., Aaby P., Kaye S., Scott W.K., Jaye A. (2011). CD4 intragenic SNPs associate with HIV-2 plasma viral load and CD4 count in a community-based study from Guinea-Bissau, West Africa. J.A.I.D.S., 56(1):1-8.10.1097/QAI.0b013e3181f638edSearch in Google Scholar

Heyen D.W., Weller J.I., Ron M., Band M., Beever J.E., Feldmesser E., Wiggans G.R., VanRaden P.M., Lewin H.A. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physio. Genomics, 1(3):165-175.10.1152/physiolgenomics.1999.1.3.165Search in Google Scholar

Hinds D.A., Stuve L.L., Nilsen G.B., Halperin E., Eskin E., Ballinger D.G., Frazer K.A., Cox D.R. (2005). Whole genome patterns of common DNA variation in three human populations. Science, 307:1072–1079.10.1126/science.1105436Search in Google Scholar

Hinrichs D., Stamer E., Junge W., Kalim E. (2005). Genetic analyses of mastitis data using animal threshold models and genetic correlation with production traits. J. Dairy Sci, 88:2260-2268.10.3168/jds.S0022-0302(05)72902-7Search in Google Scholar

Hogan J. (2005). Human health risks associated with high SCC milk. Proceedings of the British Mastitis Conference, 2005. Stoneleigh, Warwickshire, UK, 12 October 2005. Inst.Anim.Health, 21–124 pp.Search in Google Scholar

Hogeveen H., (2005). Mastitis in dairy production: Current knowledge and future solutions. Book Type: Conference Proceeding. ISBN: 9789076998701. https://doi.org/10.3920/978-90-8686-550-5.10.3920/978-90-8686-550-5Search in Google Scholar

Hogeveen H., Huijps, K., Lam T.J.G.M. (2011). Economic aspects of mastitis: New developments. New Zealand Vet. J., 59(1): 16–23.10.1080/00480169.2011.547165Search in Google Scholar

Holmes C.W., Wilson G.F. (1984). Milk Production from Pastures. Butterworths of New Zealand. Wellington, New Zealand.Search in Google Scholar

Horejsi V. (2003). The roles of membrane microdomains (rafts) in T cell activation. Immunol. Rev., 191: 148–164. 36.10.1034/j.1600-065X.2003.00001.xSearch in Google Scholar

International Dairy Federation. (1999). Suggested interpretation of mastitis terminology. Bulletin of the International Dairy Federation: 338, 3–26.Search in Google Scholar

Iraguha B., Hamudikuwanda H., Mushonga B., Kandiwa, E., Mpatswenumugabo J.P. (2017). Comparison of cow-side diagnostic tests for subclinical mastitis of dairy cows in Musanze district, Rwanda. J.S.A.V.A., 88:1464. https://doi.org/10.4102/jsava.v88i0.146410.4102/jsava.v88i0.1464613812428697611Search in Google Scholar

Islam M. A., Islam M. Z., Rahman M. S., Islam M. T. (2011). Prevalence of subclinical mastitis in dairy cows in selected areas of Bangladesh. Bangladesh J. Vet. Med., 9 (1): 73-78.10.3329/bjvm.v9i1.11216Search in Google Scholar

Jones G.M. (2006). Understanding the basics of mastitis. Virginia State University, USA. Virginia Cooperative Extension, Publication, 7:404-233.Search in Google Scholar

Joshi S., Gokhale S. (2006). Status of mastitis as an emerging disease in improved and periurban dairy farms in India. Ann. New York Acad. Sci., 1081: 74–83.10.1196/annals.1373.007Search in Google Scholar

Karima G.A.H. (2013). Genetic basis of mastitis resistance in dairy cattle - a review. Ann. Anim. Sci., 13(4):663–673.10.2478/aoas-2013-0043Search in Google Scholar

Katsande S., Matope G., Ndengu M., Pfukenyi D.M. (2013). Prevalence of mastitis in dairy cows from small lholder farms in Zimbabwe. J. Vet. Res., 80(1): E1–7. [Online. doi: 10.4102/ojvr.v80i1.523.]10.4102/ojvr.v80i1.52323718150Search in Google Scholar

Kehrli M.E., Shuster D.E. (1994). Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J. Dairy Sci., 77: 619-627.10.3168/jds.S0022-0302(94)76992-7Search in Google Scholar

Kitchen B.J. (1981). Review of the progress of dairy science - bovine mastitis - milk compositional changes and related diagnostic-tests. J. Dairy Res., 48(1): 167–188.10.1017/S0022029900021580Search in Google Scholar

Klatzmann D. (1984). T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, 312:767–768.10.1038/312767a0Search in Google Scholar

Koivula M., Mantysaari E.A., Negussie E., Serenius T. (2005). Genetic and Phenotypic Relationships among Milk Yield and Somatic Cell Count Before and After Clinical Mastitis. J. Dairy Sci., 88(2):827–833.10.3168/jds.S0022-0302(05)72747-8Search in Google Scholar

Kolbehdari D., Wang Z., Grant J.R., Murdoch B., Prasad A., Xiu Z., Marques E., Stothard P., Moore S.S. (2009). A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J. Anim. Breed. Genet., 126: 216–227.10.1111/j.1439-0388.2008.00793.xSearch in Google Scholar

Kono T., Korenaga H. (2013). Cytokine Gene Expression in CD4 Positive Cells of the Japanese Pufferfish, Takifugu rubripes. PLoS ONE, 8(6): e66364. [doi:10.1371/journal.pone.0066364]10.1371/journal.pone.0066364368888023823320Search in Google Scholar

Koskinen R., Salomonsen J., Tregaskes C.A., Young J.R., Goodchild M., Bumstead N. Vainio O. (2002). The chicken CD4 gene has remained conserved in evolution. Immunogenetics, 54(7):520-525.10.1007/s00251-002-0490-4Search in Google Scholar

Kozacinski L.M., Iladziosmanovi T., Majic I.K., Jole C.Z. (2002). Relationships between the results of mastitis tests, somatic cell counts and the detection of mastitis agents in milk. Paraxis Vet., 57: 255-260.Search in Google Scholar

Kurup M.P.G. (2001). Smallholder dairy production and marketing in India. Opportunities and constraints. In: D. Rangnekar and W. Thorpe (editors). Smallholder dairy production and marketing –Opportunities and constraints. Proceedings of a South– South workshop held at National Dairy Development Board (NDDB) Anand, India, 13–16 March 2001. ILRI, Nairobi, Kenya.Search in Google Scholar

Leung R.K., Thomson K., Gallimore A., Jones E., Van den B.M., Sierro S. et al., (2001). Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat. Immunol., 2(12):1167–73. [doi:10.1038/ni733]10.1038/ni73311694883Search in Google Scholar

Marie H., Gitte K., Carsten S., Larsen G.P., Court P., Niels O., Jan G. (2013). CD4 Decline is associated with increased risk of cardiovascular disease, cancer, and death in virally suppressed patients with HIV. Clinical Infectious Diseases, 57(2):314-321.10.1093/cid/cit232Search in Google Scholar

Mattapallil J.J. et al. (2005). Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature, 434:1093–1097.10.1038/nature03501Search in Google Scholar

Megersa B., Chala T., Abunna F., Regassa A., Berhanu M., Etana D. (2010). Occurrence of mastitis and associated risk factors in lactating goats under pastoral management in Borana, Southern Ethiopia. Trop. Anim. Hlth. Production, 42: 1249-1255.10.1007/s11250-010-9557-7Search in Google Scholar

Mellenberger R. Dept. of Animal Sciences, Michigan State University and Carol, J. Roth, Dept. of Dairy Science, University of Wisconsin-Madison April, 2000.Search in Google Scholar

Memon M.I., Mirbahar K.B.,. Memon M.R, Akhtar N., Soomoro S.A., Dewani P. (1999). A study on the etiology of subclinical mastitis in buffaloes. Pakistan J. Agri. Eng. Vet. Sci., 15: 34-36.Search in Google Scholar

Miyagawa F., Nakamura Y., Miyashita K., Iioka H., Himuro Y., Ogawa K., Nishimura C., Nishikawa M., Mitsui Y., Ito Y., Ommori R. (2016). Preferential expression of CD134, an HHV-6 cellular receptor, on CD4 T cells in drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS). J. Dermatological Sci., 83(2): 151-154.10.1016/j.jdermsci.2016.05.001Search in Google Scholar

Moges N., Hailemariam T., Fentahun T., Chaine M., Melaku A. (2012). Bovine mastitis and associated risk factors in smallholder lactating dairy farms in Hawassa, Southern Ethiopia. Global Veterinarian, 9(4): 441–446.Search in Google Scholar

Muhasin A.V.N., Kumar A., Rahim A., Sebastian R., Mohan V., Dewangan P.P.M. (2014). An overview on single nucleotide polymorphism studies in mastitis research. Vet. world, 7(6): 416-421. [doi: 10.14202/vetworld.2014.416-421]10.14202/vetworld.2014.416-421Search in Google Scholar

Mukherji B.I.J.A.Y., Guha A., Chakraborty N.G., Sivanandham M., Nashed A.L., Sporn J.R., Ergin M.T. (1989). Clonal analysis of cytotoxic and regulatory T cell responses against human melanoma. J. Exp. Med., 169(6): 1961-1976.10.1084/jem.169.6.1961Search in Google Scholar

Nam H.M., Kim J.M., Lim S.K., Jang K.C., Jung S.C. (2010). Infectious aetiologies of mastitis on Korean dairy farms during 2008. J. RVSC., 88: 372-4.10.1016/j.rvsc.2009.12.008Search in Google Scholar

Ndegwa E.N., Mulei C.M., Munyna S.J. (2000). The prevalence of subclinical mastitis in dairy goats in Kenya. J. South Afr. Vet. Assoc., 71: 25-27.10.4102/jsava.v71i1.672Search in Google Scholar

Ojo O.E., Oyekunle M.A., Ogunleye A.O., Otesile E.B. (2009). Escherichi coli, O157:H7 in Food animals in part of south-western Nigeria. Prevalence and invitro antimicrobial susceptibility. Trop. Vet., 26 (3): 23-30.Search in Google Scholar

Oliver S., González R., Hogan J., Jayarao B., Owens W. (2004). Microbiological procedures for the diagnosis of bovine udder infection and determination of milk quality, 4th Ed, National Mastitis Council, Verona, WI, USA, 1-28 pp.Search in Google Scholar

Oviedo-Boyso J., Valdez-Alarcón J., Cajero-Juárez M., Ochoa-Zarzosa, A., López-Meza J., Bravo-Patiño A., Baizabal-Aguirre V. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. of Infection, 54(4):399-409.10.1016/j.jinf.2006.06.010Search in Google Scholar

Oyugi J.O., Vouriot F.C., Alimonti J., Wayne S., Luo M., Ao Z., Yao X., Sekaly R.P., Elliott L.J., Simonsen J.N. (2009). A common CD4 gene variant is associated with an increased risk of HIV-1 infection in Kenyan female commercial sex workers. The J. infect. dis., 199(9), pp.1327-1334.10.1086/59761619301975Search in Google Scholar

Pant S.D., Schenkel F.S., Baca I.L., Sharma B.S., Karrow N.A. (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics, 8: 421. doi:10.1186/1471-2164-8421.10.1186/1471-2164-8-421Search in Google Scholar

Pirzada M., Malhi K.K., Kamboh A.A., Rind R., Abro S.H., Lakho S.A., Bhutto K.R., Huda N. (2016). Prevalence of subclinical mastitis in dairy goats caused by bacterial species. J. Anim. Health Prod. 4(2): 55-59.10.14737/journal.jahp/2016/4.2.55.59Search in Google Scholar

Rahman A., Islam M., Rony A., Sharmin, Islam M. (2010). PREVALENCE AND RISK FACTORS OF MASTITIS IN LACTATING DAIRY COWS AT BAGHABARI MILK SHED AREA OF SIRAJGANJ. Bangladesh J. Vet. Med., 8:157-162. [10.3329/bjvm.v8i2.11200]10.3329/bjvm.v8i2.11200Search in Google Scholar

Rivas A.L., Schwager S.J., González R.N., Quimby F.W., Anderson K.L. (2007). Multifactorial relationships between intramammary invasion by Staphylococcus aureus and bovine leukocyte markers. Can. J. Vet. Res., 71(2):135.Search in Google Scholar

Rollin E., Dhuyvetter K.C., Overton M.W. (2015). The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Preventive Vet. Med., 122(3):257-6410.1016/j.prevetmed.2015.11.00626596651Search in Google Scholar

Rothschild M.F., Skow L., Lamont S.J. (2000). The major Histocompatibility Complex and it’s role in disease resistance and immune responsiveness, in: Axford R.F.E., Bishop S.C., Nicholas F.W., Owen J.B (Eds.), Breeding for disease resistance in farm animals, CAB International, 2000, pp. 73–105.Search in Google Scholar

Rupp R., Boichard D. (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci., 82:2198–2204.10.3168/jds.S0022-0302(99)75465-2Search in Google Scholar

Sammiullah M.U.D., Syed M. A., Khan M., (2000). Frequency and causes of culling and mortality in Holstein Friesian cattle in NWFP (Pakistan). J. Anim. Hlth. Prod., 20: 22-24.Search in Google Scholar

Schroeder J. (2012). Bovine Mastitis and Milking Management. North Dakota State University. https://www.ag.ndsu.edu/pubs/ansci/dairy/as1129.pdfSearch in Google Scholar

Seegers H., Fourichon C., Beaudeau F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res., 34: 475–491.10.1051/vetres:2003027Search in Google Scholar

Sharma N., Singh N.K., Bhadwal M.S., (2011). Relationship of somatic cell count and mastitis: An overview. Asian Austral. J. Anim. Sci., 24(3): 429–438.10.5713/ajas.2011.10233Search in Google Scholar

Shitandi A., Anakalo G., Galgalo T., Mwangi M. (2004). Prevalence of bovine mastitis amongst smallholder dairy herds in Kenya. Isr. J. Vet. Med., 59:1–2.Search in Google Scholar

Singer, J.B., 2009. Candidate gene association analysis. In Cardiovascular Genomics (pp. 223-230). Humana Press, Totowa, NJ.10.1007/978-1-60761-247-6_1319763931Search in Google Scholar

Smith D.K., Neal J.J., Holmberg S.D. (1993). Unexplained opportunistic infections and CD4+ T-lymphocytopenia without HIV infection. An investigation of cases in the United States. The Centers for Disease Control Idiopathic CD4 T-lymphocytopenia Task Force. N. Engl. J. Med., 328(6):373-379.10.1056/NEJM199302113280601Search in Google Scholar

Smith S.J., Cases S., Jensen D.R., Chen H.C., Sande E., Tow B., Sanan D.A., Raber J., Eckel R.H., Farese Jr.R.V. (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet., 25(1):87.10.1038/75651Search in Google Scholar

Soltys J., Quinn M.T. (1999). Selective recruitment of T-cell subsets to the udder during staphylococcal and streptococcal mastitis: analysis of lymphocyte subsets and adhesion molecule expression. Infect. Immun., 67(12):6293-6302.10.1128/IAI.67.12.6293-6302.1999Search in Google Scholar

Song M., He Y., Zhou H., Zhang Y., Li X., Yu Y. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6:29390. doi: 10.1038/srep29390.10.1038/srep29390494416627411928Search in Google Scholar

Sorensen L.P., Mark T., Madsen P., Lund M.S. (2009). Genetic correlations between pathogen specific mastitis and somatic cell count in Danish Holsteins. J. Dairy Sci., 92(7): 3457-3471.10.3168/jds.2008-1870Search in Google Scholar

Stear M.J., Bisshop S.C., Mallard B.A., Raadsma H. (2001). The sustainability, feasibility and desirability of breeding livestock for disease resistance. Vet. Sci., 71(1):1-7.10.1053/rvsc.2001.0496Search in Google Scholar

Swanson K.M., Stelwagen K., Davis S.R., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci., 92: 117-129.10.3168/jds.2008-1382Search in Google Scholar

Tak W. M., Mary E.S. (2006). The T cell Receptor: Structure of Its Proteins and Genes, in The Immune Response, III. STRUCTURE OF CD4.Search in Google Scholar

Taylor B.C., Keefe R.G., Dellinger J.D., Nakamura Y., Cullor J.S., Stott J.L. (1997). T cell populations and cytokine expression in milk derived from normal and bacteria-infected bovine mammary glands. Cellular immunology, 182(1): 68-76.10.1006/cimm.1997.1215Search in Google Scholar

Uddin M.N., Uddin M.B., Al-Mamun M., Hassan M.M., Khan M.M.H. (2012). Small Scale dairy farming for livelihoods of rural farmers: constraint and prospect in Bangladesh. J. Anim. Sci. Adv., 2(6): 543–550.Search in Google Scholar

Usman T., Wang Y., Song M., Wang X., Dong Y., Liu C., Wang S., Zhang Y., Xiao W., Yu Y. (2017). Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. Genet. Mol. Res., 16(4).10.4238/gmr16039859Search in Google Scholar

Usman T., Yu Y., Zhai L., Liu C., Wang X., Wang Y. (2016). Association of CD4 SNPs with fat percentage of Holstein cattle. Genet. Mol. Res., 15(3).10.4238/gmr.1503869727706731Search in Google Scholar

Usman T., Yachun W., Minyan S., Xiao W., Yichun D., Chao L., Shuxiang W., Yi Z., Wei X., Ying Y. (2018). Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. GMR, 17(1).10.4238/gmr16039859Search in Google Scholar

Viegher D.E.S., Barkema H.W., Stryhn. H., Opsomer G., De Kruif A. (2005). Impact of early lactation somatic cell count in heifers on milk yield over the first lactation. J. Dairy Sci., 88: 938-47.10.3168/jds.S0022-0302(05)72761-2Search in Google Scholar

Wang X.S., Zhang Y., He Y.H., Ma P.P., et al. 2013. Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genetics and Molecular Research, 12: 6228-39.Search in Google Scholar

Wang X.S., Zhang Y., He Y.H., Ma P.P., Fan L.J., Wang Y.C., Zhang Y.I., Sun D.X., Zhang S.L., Wang C.D., Song J.Z. (2013). Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genet. Mol. Res., 12(4): 6228-6239.10.4238/2013.December.4.10Search in Google Scholar

Wang, Z., Hong, J., Sun, W., Xu, G., Li, N., Chen, X., Liu, A., Xu, L., Sun, B. and Zhang, J.Z., 2006. Role of IFN-γ in induction of Foxp3 and conversion of CD4+ CD25–T cells to CD4+ Tregs. The Journal of clinical investigation, 116(9), pp.2434-2441.10.1172/JCI25826153387316906223Search in Google Scholar

Winter P., Colditz I. G. (2002). Immunological responses of the lactating ovine udder following experimental challenge with Staphylococcus epidermidis. Vet. Immunol. Immunopathol., 89(2):57–65.10.1016/S0165-2427(02)00184-8Search in Google Scholar

Xu, Y., Weatherall, C., Bailey, M., Alcantara, S., De Rose, R., Estaquier, J., Wilson, K., Suzuki, K., Corbeil, J., Cooper, D.A. and Kent, S.J., 2013. Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. Journal of virology, 87(7), pp.3760-3773.10.1128/JVI.02497-12362422423325697Search in Google Scholar

Yu Y., Rabinowitz R., Steinitz M., Schlesinger M. (2002). Correlation between the expression of CD4 and the level of CD4 mRNA in human B-cell lines. Cell Immunol., 215: 78–86.10.1016/S0008-8749(02)00003-5Search in Google Scholar

Zhao X., Lacasse P. (2018). Mammary tissue damage during bovine mastitis: Causes and control. J. Anim. Sci., 86:57-65.10.2527/jas.2007-0302Search in Google Scholar

Zou Y.R., Sunshine M.J., Taniuchi I., Hatam F., Killeen N., Littman D.R. (2001). Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet., 29(3):332–6.10.1038/ng750Search in Google Scholar

Zou, Y., Li, W.Y., Wan, Z., Zhao, B., He, Z.W., Wu, Z.G., Huang, G.L., Wang, J., Li, B.B., Lu, Y.J. and Ding, C.C., 2015. Huangqin-tang ameliorates TNBS-induced colitis by regulating effector and regulatory CD4. BioMed research international, 2015.10.1155/2015/102021453942726347453Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine