Acceso abierto

Genetic Variability in the Loci of FABP4, PPARγ and SCD Genes of Sheep Breeds Raised for Different Purposes


Cite

Ariyama H., Kono N., Matsuda S., Inoue T., Arai H. (2010). Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem., 285: 22027–22035.10.1074/jbc.M110.126870Search in Google Scholar

Barak Y., Nelson M.C., Ong E.S., Jones Y.Z., Ruiz-Lozano P., Chien K.R., Koder A., Evans R.M. (1999). PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell, 4: 585–595.10.1016/S1097-2765(00)80209-9Search in Google Scholar

Barbiero J.K., Santiago R.M., Persike D.S., da Silva Fernandes M.J., Tonin F.S., da Cunha C., Lucio Boschen S., Lima M.M.S., Vital M.A.B.F. (2014). Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine. Behav. Brain Res., 274: 390–399.10.1016/j.bbr.2014.08.014Search in Google Scholar

Bernard L., Leroux C., Hayes H., Gautier M., Chilliard Y., Martin P. (2001). Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3′-UTR sequence arising from a single exon. Gene, 281: 53–61.10.1016/S0378-1119(01)00822-8Search in Google Scholar

Cao H., Gerhold K., Mayers J.R., Wiest M.M., Watkins S.M., Hotamisligil G.S. (2008). Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell, 134: 933–944.10.1016/j.cell.2008.07.048Search in Google Scholar

Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S., Bauman D.E. (2001). The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem., 12: 622–630.10.1016/S0955-2863(01)00180-2Search in Google Scholar

Dixon J.L., Furukawa S., Ginsberg H.N. (1991). Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting early intracellular degradation of apolipoprotein B. J. Biol. Chem., 266: 5080–5086.10.1016/S0021-9258(19)67758-6Search in Google Scholar

Enoch H.G., Catala A., Strittmatter P. (1976). Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem., 251: 5095–5103.10.1016/S0021-9258(17)33223-4Search in Google Scholar

Fan Y.Y., Zan L.S., Fu C.Z., Tian W.Q., Wang H.B., Liu Y.Y., Xin Y.P. (2011). Three novel SNPs in the coding region of PPARγ gene and their associations with meat quality traits in cattle. Mol. Biol. Rep., 38: 131–137.10.1007/s11033-010-0086-2Search in Google Scholar

Fan Y.Y., Fu G.W., Fu C.Z., Zan L.S., Tian W.Q. (2012). A missense mutant of the PPAR-gamma gene associated with carcass and meat quality traits in Chinese cattle breeds. Genet. Mol. Res., 11: 3781–3788.10.4238/2012.August.17.4Search in Google Scholar

Ferre P. (2004). The biology of peroxisome proliferators-activated receptors. Diabetes, 53: 43–50.10.2337/diabetes.53.2007.S43Search in Google Scholar

Fu Y., Luo N., Lopes-Virella M.F. (2000). Oxidized LDL induces the expression of ALBP/aP2 mRNA and protein in human THP-1 macrophages. J. Lipid Res., 41: 2017–2023.10.1016/S0022-2275(20)32363-4Search in Google Scholar

García-Fernández M., Gutiérrez-Gil B., García-Gámez E., Arranz J.J. (2009). Genetic variability of the stearoyl-CoA desaturase gene in sheep. Mol. Cell. Probe., 23, 107–111.10.1016/j.mcp.2009.01.00119418606Search in Google Scholar

Gutiérrez-Juárez R., Pocai A., Mulas C., Ono H., Bhanot S., Monia B.P., Rossetti L. (2006). Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J. Clin. Invest., 116: 1686–1695.10.1172/JCI26991Search in Google Scholar

Hanhoff T., Lücke C., Spener F. (2002). Insights into binding of fatty acids by fatty acid binding proteins. Mol. Cell. Biochem., 239: 45–54.10.1007/978-1-4419-9270-3_6Search in Google Scholar

Ibrahim A.H.M., Shehata M.F., Ismail I.M., Gad S.M.A. (2014). Association of fatty acid binding protein 4 (FABP4) polymorphisms with growth and carcass traits of Barki sheep. J. Am. Sci., 10: 10–15.Search in Google Scholar

Jiang Y., Xie M., Chen W., Talbot R., Maddox J.F., Faraut T., Wu C., Muzny D.M., Li Y., Zhang W., Stanton J.A., Brauning R., Barris W.C., Hourlier T., Aken B.L., Searle S.M., Adelson D.L., Bian C., Cam G.R., Chen Y., Cheng S., De Silva U., Dixen K., Dong Y., Fan G., Franklin I.R., Fu S., Fuentes-Utrilla P., Guan R., Highland M.A., Holder M.E., Huang G., Ingham A.B., Jhangiani S.N., Kalra D., Kovar C.L., Lee S.L., Liu W., Liu X., Lu C., Lv T., Mathew T., Mc William S., Menzies M., Pan S., Robelin D., Servin B., Townley D., Wang W., Wei B., White S.N., Yang X., Ye C., Yue Y., Zeng P., Zhou Q., Hansen J.B., Kristiansen K., Gibbs R.A., Flicek P., Warkup C.C., Jones H.E., Oddy V.H., Nicholas F.W., Mc Ewan J.C., Kijas J.W., Wang J., Worley K.C., Archibald A.L., Cockett N., Xu X., Dalrymple B.P. (2014). The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 344: 1168–1173.10.1126/science.1252806Search in Google Scholar

Karahashi M., Ishii F., Yamazaki T., Imai K., Mitsumoto A., Kawashima Y., Kudo N. (2013). Up-regulation of stearoyl-CoA desaturase 1 increases liver MUFA content in obese zucker but not Goto-Kakizaki rats. Lipids, 48: 457–467.10.1007/s11745-013-3786-2Search in Google Scholar

Kersten S., Seydoux J., Peters J.M., Gonzalez F.J., Desvergne B., Wahli W. (1999). Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest., 103: 1489–1498.10.1172/JCI6223Search in Google Scholar

Koutnikova H., Cock T.A., Watanabe M., Houten S.M., Champy M.F., Dierich A., Auwerx J. (2003). Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. P. Natl. Acad. Sci. USA, 100: 14457–14462.10.1073/pnas.2336090100Search in Google Scholar

Legrand P., Catheline D., Fichot M., Lemarchal P. (1997). Inhibiting D9-desaturase activity impairs triacylglycerol secretion in cultured chicken hepatocytes. J. Nutr., 127: 249–256.10.1093/jn/127.2.249Search in Google Scholar

Marion-Letellier R., Savoye G., Ghosh S. (2015). Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharmacol., 795: 44–49.10.1016/j.ejphar.2015.11.004Search in Google Scholar

Matarese V., Bernlohr D.A. (1988). Purification of murine adipocyte lipid-binding protein. Characterization as a fatty acid- and retinoic acid-binding protein. J. Biol. Chem., 263: 14544–14551.10.1016/S0021-9258(18)68254-7Search in Google Scholar

Mishkin S., Stein L., Gatmaitan Z., Arias I.M. (1972). The binding of fatty acids to cytoplasmic proteins: Binding to Z protein in liver and other tissues of the rat. Biochem. Bioph. Res. Co., 47: 997–1003.10.1016/0006-291X(72)90931-XSearch in Google Scholar

Miyazaki M., Kim Y.C., Gray-Keller M.P., Attie A.D., Ntambi J.M. (2000). The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J. Biol. Chem., 275: 30132–30138.10.1074/jbc.M005488200Search in Google Scholar

Niżnikowski R. (2011). Sheep breeding, rearing and use (in Polish). Wieś Jutra, Warszawa, pp. 21–32.Search in Google Scholar

Ntambi J.M., Miyazaki M., Dobrzyn A. (2004). Regulation of stearoyl-CoA desaturase expression. Lipids, 39: 1061–1065.10.1007/s11745-004-1331-2Search in Google Scholar

Ockner R.K., Manning J.A., Poppenhausen R.B., Ho W.K. (1972). A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science, 177: 56–58.10.1126/science.177.4043.56Search in Google Scholar

Pisanu A., Lecca D., Mulas G., Wardas J., Simbula G., Spiga S., Carta A.R. (2014). Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol. Dis., 71: 280–291.10.1016/j.nbd.2014.08.011Search in Google Scholar

Rosen E.D., Sarraf P., Troy A.E., Bradwin G., Moore K., Milstone D.S., Spiegelman B.M., Mortensen R.M. (1999). PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell, 4: 611–617.10.1016/S1097-2765(00)80211-7Search in Google Scholar

Sevane N., Armstrong E., Cortés O., Wiener P., Wong R.P., Dunner S. (2013). Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci., 94: 328–335.10.1016/j.meatsci.2013.02.014Search in Google Scholar

Sobrado M., Pereira M.P., Ballesteros I., Hurtado O., Fernández-López D., Pradillo J.M., Caso J.R., Vivancos J., Moro M.A. (2009). Synthesis of lipoxin A 4 by 5-lipoxygenase mediates PPARγ-dependent, neuroprotective effects of rosiglitazone in experimental stroke. J. Neurosci., 29: 3875–3884.10.1523/JNEUROSCI.5529-08.2009Search in Google Scholar

Tontonoz P., Hu E., Graves R.A., Budavari AI., Spiegelman B.M. (1994). mPPARgamma2: Tissue-specific regulator of an adipocyte enhancer. Gene. Dev., 8: 1224–1234.10.1101/gad.8.10.1224Search in Google Scholar

Wei Y., Wang D., Topczewski F., Pagliassotti M.J. (2006). Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol.- Endoc. M., 291: 275–281.10.1152/ajpendo.00644.2005Search in Google Scholar

Wei Y., Wang D., Gentile C.L., Pagliassotti M.J. (2009). Reduced endoplasmic reticulum luminal calcium links saturated fatty acid-mediated endoplasmic reticulum stress and cell death in liver cells. Mol. Cell. Biochem., 331: 31–40.10.1007/s11010-009-0142-1Search in Google Scholar

Willson T.M., Brown P.J., Sternbach D.D., Henke B.R. (2000). The PPARs: From orphan receptors to drug discovery. J. Med. Chem., 43: 527–550.10.1021/jm990554gSearch in Google Scholar

Xu Q.L., Tang G.W., Zhang Q.L., Huang Y.K., Liu Y.X., Quan K., Zhu K.Y., Zhang C.X. (2011). The FABP4 gene polymorphism is associated with meat tenderness in three Chinese native sheep breeds. Czech J. Anim. Sci., 56: 1–6.10.17221/231/2009-CJASSearch in Google Scholar

Yan W., Zhou H., Luo Y., Hu J., Hickford J.G.H. (2012). Allelic variation in ovine fatty acid-binding protein (FABP4) gene. Mol. Biol. Rep., 39: 10621–10625.10.1007/s11033-012-1951-ySearch in Google Scholar

Yeh F.C., Boyle J. (1997). POPGENE, the user-friendly shareware for population genetic analysis. Mol. Biol. Biotechnol., 434: 724–731.Search in Google Scholar

Zhao Y., Calon F., Julien C., Winkler J.W., Petasis N.A., Lukiw W.J., Bazan N.G. (2011). Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secre-tase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS ONE, 6. http://doi.org/10.1371/journal.pone.001581610.1371/journal.pone.0015816301644021246057Open DOISearch in Google Scholar

Zimmerman A.W., Veerkamp J.H. (2002). New insights into the structure and function of fatty acid-binding proteins. Cell. Mol. Life Sci.: CMLS, 59: 1096–1116.10.1007/s00018-002-8490-ySearch in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine