Acceso abierto

The Cosine-Sine Functional Equation on Semigroups

  
05 oct 2021

Cite
Descargar portada

The primary object of study is the “cosine-sine” functional equation f(xy) = f(x)g(y)+g(x)f(y)+h(x)h(y) for unknown functions f, g, h : S → ℂ, where S is a semigroup. The name refers to the fact that it contains both the sine and cosine addition laws. This equation has been solved on groups and on semigroups generated by their squares. Here we find the solutions on a larger class of semigroups and discuss the obstacles to finding a general solution for all semigroups. Examples are given to illustrate both the results and the obstacles.

We also discuss the special case f(xy) = f(x)g(y) + g(x)f(y) − g(x)g(y) separately, since it has an independent direct solution on a general semigroup.

We give the continuous solutions on topological semigroups for both equations.

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales