Cite

[1] J.B. Bacani and J.F.T. Rabago, On generalized Fibonacci numbers, Applied Mathematical Sciences 9 (2015), no. 73, 3611–3622.Search in Google Scholar

[2] R. Ben Taher and M. Rachidi, Explicit formulas for the constituent matrices. Application to the matrix functions, Spec. Matrices 3 (2015), 43–52.Search in Google Scholar

[3] R. Ben Taher and M. Rachidi, Solving some generalized Vandermonde systems and inverse of their associate matrices via new approaches for the Binet formula, Appl. Math. Comput. 290 (2016), 267–280.Search in Google Scholar

[4] B. Bernoussi, M. Rachidi, and O. Saeki, Factorial Binet formula and distributional moment formulation of generalized Fibonacci sequences, Fibonacci Quart. 42 (2004), no. 4, 320–329.Search in Google Scholar

[5] G. Cerda-Morales, Investigation of generalized hybrid Fibonacci numbers and their properties, arXiv preprint. Available at arXiv: 1806.02231v1.Search in Google Scholar

[6] G. Dattoli, S. Licciardi, R.M. Pidatella, and E. Sabia, Hybrid complex numbers: the matrix version, Adv. Appl. Clifford Algebr. 28 (2018), no. 3, Paper No. 58, 17 pp.Search in Google Scholar

[7] G.P.B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), no. 4, Artlicle 14.4.7, 9 pp.Search in Google Scholar

[8] F. Dubeau, W. Motta, and M. Rachidi, O. Saeki, On weighted r-generalized Fibonacci sequences, Fibonacci Quart. 35 (1997), no. 2, 102–110.Search in Google Scholar

[9] G.S. Hathiwala and D.V. Shah, Binet–type formula for the sequence of Tetranacci numbers by alternate methods, Mathematical Journal of Interdisciplinary Sciences 6 (2017), no. 1, 37–48.Search in Google Scholar

[10] F.T. Howard and F. Saidak, Zhou’s theory of constructing identities, Congr. Numer. 200 (2010), 225–237.Search in Google Scholar

[11] R.S. Melham, Some analogs of the identity F2n + F2n+1 = F22n+1, Fibonacci Quart. 37 (1999), no. 4, 305–311.Search in Google Scholar

[12] L.R. Natividad, On solving Fibonacci-like sequences of fourth, fifth and sixth order, Int. J. Math. Sci. Comput. 3 (2013), no. 2, 38–40.Search in Google Scholar

[13] M. Özdemir, Introduction to hybrid numbers, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, Paper No. 11, 32 pp.10.1007/s00006-018-0833-3Search in Google Scholar

[14] M. Özdemir, Finding n-th roots of a 2 × 2 real matrix using de Moivre’s formula, Adv. Appl. Clifford Algebr. 29 (2019), no. 1, Paper No. 2, 25 pp.10.1007/s00006-018-0919-ySearch in Google Scholar

[15] B. Singh, P. Bhadouria, O. Sikhwal, and K. Sisodiya, A formula for Tetranacci-like sequence, Gen. Math. Notes 20 (2014), no. 2, 136–141.Search in Google Scholar

[16] Y. Soykan, Gaussian generalized Tetranacci numbers, Journal of Advances in Mathematics and Computer Science 31 (2019), no. 3, Article no. JAMCS.48063, 21 pp.10.9734/jamcs/2019/v31i330112Search in Google Scholar

[17] A. Szynal-Liana, The Horadam hybrid numbers, Discuss. Math. Gen. Algebra Appl. 38 (2018), no. 1, 91–98.Search in Google Scholar

[18] A. Szynal-Liana and I. Włoch, On Jacobsthal and Jacobsthal-Lucas hybrid numbers, Ann. Math. Sil. 33 (2019), 276–283.Search in Google Scholar

[19] M.E. Waddill, The Tetranacci sequence and generalizations, Fibonacci Quart. 30 (1992), no. 1, 9–20.Search in Google Scholar

[20] M.E. Waddill and L. Sacks, Another generalized Fibonacci sequence, Fibonacci Quart. 5 (1967), no. 3, 209–222.Search in Google Scholar

[21] M.N. Zaveri and J.K. Patel, Binet’s formula for the Tetranacci sequence, International Journal of Science and Research (IJSR) 5 (2016), no. 12, 1911–1914.Search in Google Scholar

eISSN:
2391-4238
ISSN:
0860-2107
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Mathematics, General Mathematics