Detalles de la revista
Primera edición
01 Jan 2016
Calendario de la edición
2 veces al año
Acceso abierto

Study of Enterprise Resource Optimization Scheme from the Perspective of Knapsack Problems

Publicado en línea: 15 Jun 2023
Volumen & Edición: AHEAD OF PRINT
Páginas: -
Recibido: 09 Aug 2022
Aceptado: 19 Dec 2022
Detalles de la revista
Primera edición
01 Jan 2016
Calendario de la edición
2 veces al año

Penrose, E. (1959). The Theory of the Growth of the Firm. New York: John Wiley. Search in Google Scholar

Barney, J. B. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120. Search in Google Scholar

Marr, B., Gray, D., & Neely, A. (2003). Why do firms measure their intellectual capital? Journal of Intellectual Capital, 4(2), 441-464. Search in Google Scholar

Fahy, J. (2002). A resource-based analysis of sustainable competitive advantage in a global environment. International Business Review, 11(1), 57-78. Search in Google Scholar

Yu, J. A. (2012). Dimensions of firm integrative capability from the perspective of systems engineering. Systems Engineering Procedia, (4), 393-401. Search in Google Scholar

Porter, M. E. (1980). Competitive Strategy, Techniques for Analyzing Industries and Competitors. New York: The Free Press. Search in Google Scholar

Porter, M. (1985). Competitive Advantage. New York: The Free Press. Search in Google Scholar

Yu, J. A. (2016). Study of firm resources identification based on the grey correlation degree. International Journal of Simulation: Systems, Science and Technology, 17(4), 3.1-3.6. Search in Google Scholar

Thach, P. T., & Thang, T. V. (2014). Problems with resource allocation constraints and optimization over the efficient set. Journal of Global Optimization, 58(3), 481-495. Search in Google Scholar

Lantaron-Sanchez, S., Lopez-Gonzalez, M. D., & Rodrigo-Hitos, J. (2016). Human resources optimization focused on the improvement of customer service. DYNA, 91(5), 489-489. Search in Google Scholar

Wenzel, S., Paulen, R., Stojanovski, G., Kramer, S., Beisheim, B., & Engell, S. (2016). Optimal resource allocation in industrial complexes by distributed optimization and dynamic pricing. at-Automatisierungstechnik, 64(6), 428-442. Search in Google Scholar

Grossmann, I. (2005). Enterprise-wide optimization: A new frontier in process systems engineering. AIChE Journal, 51(7), 1846-1857. Search in Google Scholar

Lan, B. X. (2004). Enterprise resource optimization and optimization model. Computer Integrated Manufacturing Systems, 10(3), 241-251. Search in Google Scholar

Cao, R., & Yang, L. Q. (2012). The affecting factors in resource optimization for cooperative communications: A case study. IEEE Transactions on Wireless Communications, 11(12), 4351-4361. Search in Google Scholar

Singh, G., & Deelman, E. (2011). The interplay of resource provisioning and workflow optimization in scientific applications. Concurrency and Computation-Practice & Experience, 23(16), 1969-1989. Search in Google Scholar

de Castro, H. F., & Cavalca, K. L. (2006). Maintenance resources optimization applied to a manufacturing system. Reliability Engineering & System Safety, 91(4), 413-420. Search in Google Scholar

Mathankar, M., & Lunge, H. S. (2011). Comparison of methods for optimization of multiple objective resource allocation problem. International Journal of Agricultural and Statistical Sciences, 7(1), 131-139. Search in Google Scholar

Jun, D. H., & El-Rayes, K. (2011). Multiobjective optimization of resource leveling and allocation during construction scheduling. Journal of Construction Engineering and Management- ASCE, 137(12), 1080-1088. Search in Google Scholar

Hegazy, T. (1999). Optimization of resource allocation and leveling using genetic algorithms. Journal of Construction Engineering and Management, 125(3), 167-175. Search in Google Scholar

Kyriklidis, C., & Dounias, G. (2016). Evolutionary computation for resource leveling optimization in project management. Integrated Computer-Aided Engineering, 23(2), 173-184. Search in Google Scholar

Liu, S. S., & Wang, C. J. (2007). Optimization model for resource assignment problems of linear construction projects. Automation in Construction, 16(4), 460-473. Search in Google Scholar

Han, X., & Makino, K. (2016). Online minimization knapsack problem. Theoretical Computer Science, 609(1), 185-196. Search in Google Scholar

Kübler, F., Böhner, J., & Steinhilper, R. (2015). Resource efficiency optimization of manufacturing processes using evolutionary computation: A turning case. Procedia Cirp, 29, 822-827. Search in Google Scholar

Azadeh, A., Ghaderi, S. F., Mirjalili, M., Moghaddam, M., & Haghighi, S. M. (2015). Optimization of human resources and industrial banks with ambiguous inputs using intelligent fuzzy mathematical programming approach. Journal of Scientific & Industrial Research, 74(10), 545-554. Search in Google Scholar

Murawski, C., & Bossaerts, P. (2016). How humans solve complex problems: The case of the knapsack problem. Scientific Reports, 6. Search in Google Scholar

Huang, E. M., & Chou, J. (2022). Optimization of multi-class 0/1 knapsack problem on GPUs by improving memory access efficiency. The Journal of Supercomputing, 78, 13653–13679. Search in Google Scholar

Agarwal, B., Ruffini, M., & Muntean, G. M. (2022). Reduced Complexity Optimal Resource Allocation for Enhanced Video Quality in a Heterogeneous Network Environment. IEEE Transactions on Wireless Communications, 21(5), 2892-2908. Search in Google Scholar

Bansal, J. C., & Deep, K. (2012). A modified binary particle swarm optimization for knapsack problems. Applied Mathematics and Computation, 218(22), 11042-11061. Search in Google Scholar

Moosavian, N. (2015). Soccer league competition algorithm for solving knapsack problems. Swarm and Evolutionary Computation, 20, 14-22. Search in Google Scholar

Truong, T. K., Li, K. L., & Xu, Y. M. (2013). Chemical reaction optimization with greedy strategy for the 0-1 knapsack problem. Applied Soft Computing, 13(4), 1774-1780. Search in Google Scholar

Moradi, N., Kayvanfar, V., & Rafiee, M. (2022). An efficient population-based simulated annealing algorithm for 0–1 knapsack problem. Engineering with Computers, 38(3), 2771-2790. Search in Google Scholar

Abdel-Basset, M., El-Shahat, D., Faris, H., & Mirjalili, S. (2019). A binary multi-verse optimizer for 0-1 multidimensional knapsack problems with application in interactive multimedia systems. Computers & Industrial Engineering, 132, 187-206. Search in Google Scholar

Wang, L., Yang, R. X., Ni, H. Q., Ye, W., Fei, M. R., & Pardalos, P. M. (2015). A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Applied Soft Computing, (34), 736-743. Search in Google Scholar

Haddar, B., Khemakhem, M., Hanafi, S., & Wilbaut, C. (2016). A hybrid quantum particle swarm optimization for the multidimensional knapsack problem. Engineering Applications of Artificial Intelligence, 55, 1-13. Search in Google Scholar

Changdar, C., Mahapatra, G. S., & Pal, R. K. (2015). An improved genetic algorithm based approach to solve constrained knapsack problem in fuzzy environment. Expert Systems with Applications, 42(4), 2276-2286. Search in Google Scholar

Changdar, C., Pal, R. K., Mahapatra, G. S., & Khan, A. (2020). A genetic algorithm based approach to solve multi-resource multi-objective knapsack problem for vegetable wholesalers in fuzzy environment. Operational Research, 20(3), 1321-1352. Search in Google Scholar

García, J., & Maureira, C. (2021). A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem. Applied Soft Computing, 102, 107077. Search in Google Scholar

Coase, R. H. (1937). The nature of the firm. Economica, 4(16), 386-405. Search in Google Scholar

Reniers, G. L. L., & Sörensen, K. (2013). An approach for optimal allocation of safety resources: Using the knapsack problem to take aggregated cost-efficient preventive measures. Risk Analysis, 33(11), 2056-2067. Search in Google Scholar

Preiss, M. P. (1993). Finding an optimal allocation of departmental resources by means of the continuous conversion of the knapsack problem. Industrial Mathematics, 43(1), 15-27. Search in Google Scholar

Jacko, P. (2016). Resource capacity allocation to stochastic dynamic competitors: knapsack problem for perishable items and index-knapsack heuristic. Annals of Operations Research, 241(1-2), 83-107. Search in Google Scholar

Frenkel, E., Nikolaev, A., & Ushakov, A. (2016). Knapsack problems in products of groups. Journal of Symbolic Computation, 74, 96-108. Search in Google Scholar

Rooderkerk, R. P., & van Heerde, H. J. (2016). Robust optimization of the 0-1 knapsack problem: Balancing risk and return in assortment optimization. European Journal of Operational Research, 250(3), 842-854. Search in Google Scholar

Ding, J., Chen, L., Ke, G. Y., Li, Y., & Zhang, L. (2022). Balancing the profit and capacity under uncertainties: a target‐based distributionally robust knapsack problem. International Transactions in Operational Research, 29(2), 760-782. Search in Google Scholar

Gordon, V. S., & Whitley, L. D. (1993). Serial and Parallel Genetic Algorithms as Function Optimizers. Published in ICGA-93: The 5th International Conference on Genetic Algorithms, UrbanaChampaign, 177-183. Morgan-Kaufmann (ed. Stephanie Forrest). Search in Google Scholar

Olsen, A. L. (1994). Penalty functions and the knapsack problem. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Search in Google Scholar

Hinterding, R. (1994). Mapping, order-independent genes and the knapsack problem. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Search in Google Scholar

Kubota, N., & Fukuda, T. (1998). Schema representation in virus-evolutionary genetic algorithm for knapsack problem. 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). Search in Google Scholar

Gen, M., Cheng, R. W., & Lin, L. (2008). Network Models and Optimization: Multiobjective Genetic Algorithm Approach. London: Springer Publishing Company. Search in Google Scholar

Artículos recomendados de Trend MD