1. bookVolumen 8 (2023): Edición 1 (January 2023)
Detalles de la revista
License
Formato
Revista
eISSN
2444-8656
Primera edición
01 Jan 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Research on Dynamics of Flexible Multibody System with Deployable Antenna Based on Static Lagrangian Function

Publicado en línea: 15 Jul 2022
Volumen & Edición: Volumen 8 (2023) - Edición 1 (January 2023)
Páginas: 893 - 908
Recibido: 22 Feb 2022
Aceptado: 25 Apr 2022
Detalles de la revista
License
Formato
Revista
eISSN
2444-8656
Primera edición
01 Jan 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés

Figure 1

Flow chart of system platform
Flow chart of system platform

Figure 2

Flow chart of design system
Flow chart of design system

Figure 3

Flow chart of numerical calculation module
Flow chart of numerical calculation module

Figure 4

Relationship between crank Angle and time
Relationship between crank Angle and time

Figure 5

Relationship between crank angular velocity and time
Relationship between crank angular velocity and time

Figure 6

Dynamic model diagram
Dynamic model diagram

Figure 7

Relationship between angular velocity and time of two connecting rods
Relationship between angular velocity and time of two connecting rods

Figure 8

Relationship between angular velocity and time of two connecting rods
Relationship between angular velocity and time of two connecting rods

Yiqun Zhang . Integrated Design of Structure and Control for Flexible Space Deployable Antenna [D]. Xidian University. Search in Google Scholar

Genyong Wu, Xingsuo He, P.Frank Pai. Dynamic Simulation of Large Deformation Flexible Multi-body System Based on Geometric Accurate Modeling Theory [C]// Chinese Congress on Mechanics. 2013. Search in Google Scholar

Meizhi Li . Study on dynamics of flexible multi - bar system. Huazhong University of Science and Technology, 2004. Search in Google Scholar

Dawei Zhu, Ping Zhu, Jiancheng Miao. Comparative Study on Dynamics of Rigid body and Flexible Body Based on Lagrange Method [J]. Computer Simulation, 2008, 025(001):314-319. Search in Google Scholar

Hongxin Li . Analysis and Experimental Research on Deployable Planar Antenna Mechanism deployable Process [D]. Harbin Institute of Technology, 2015. Search in Google Scholar

Pei Li,Cheng LIU, Qiang TIAN, et al. Dynamics of Deployable Antenna Structures with Large Flexible ring Trusses [C]// 2014 Conference on Deployable Spatial Structures. Search in Google Scholar

Shaoze YAN, Yuming GUAN, Jinwei FAN, et al. Dynamic Modeling of Flexible Multi-body System Based on Small Deformation [J]. Journal of Hebei University of Technology, 1999, 28(1):5. Search in Google Scholar

Zhengfeng Bai, Yang Zhao, Hao Tian . Journal of Vibration and Shock, 2009, 28(6):4. Search in Google Scholar

Dazhi Cao,Hongfu Qiang, Gexue Ren. Parallel Computation of Flexible Multi-body System Dynamics Based on OpenMP and Pardiso [J]. Journal of Tsinghua University: Science & Technology, 2012, 52(11):7. Search in Google Scholar

Selvi, M. Salai Mathi and Rajendran, L.. “Application of modified wavelet and homotopy perturbation methods to nonlinear oscillation problems” Applied Mathematics and Nonlinear Sciences, vol.4, no.2, 2019, pp.351-364. https://doi.org/10.2478/AMNS.2019.2.00030 Search in Google Scholar

Hassan, Sk. Sarif, Reddy, Moole Parameswar and Rout, Ranjeet Kumar. “Dynamics of the Modified n-Degree Lorenz System” Applied Mathematics and Nonlinear Sciences, vol.4, no.2, 2019, pp.315-330. https://doi.org/10.2478/AMNS.2019.2.00028. Search in Google Scholar

Recuero A M, Escalona, José L. Dynamics of the coupled railway vehicle–flexible track system with irregularities using a multibody approach with moving modes[J]. Vehicle System Dynamics, 2014, 52(1):45-67. Search in Google Scholar

Artículos recomendados de Trend MD