1. bookVolumen 8 (2023): Edición 1 (January 2023)
Detalles de la revista
License
Formato
Revista
eISSN
2444-8656
Primera edición
01 Jan 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Health status diagnosis of the bridges based on multi-fractal de-trend fluctuation analysis

Publicado en línea: 19 Oct 2021
Volumen & Edición: Volumen 8 (2023) - Edición 1 (January 2023)
Páginas: 187 - 194
Recibido: 19 Mar 2021
Aceptado: 10 May 2021
Detalles de la revista
License
Formato
Revista
eISSN
2444-8656
Primera edición
01 Jan 2016
Calendario de la edición
2 veces al año
Idiomas
Inglés

Fig. 1

Deflection signals in the time domain.
Deflection signals in the time domain.

Fig. 2

Deflection signal scale index.
Deflection signal scale index.

Fig. 3

Generalized Hurst index for deflection signals.
Generalized Hurst index for deflection signals.

Fig. 4

Multi-fractal spectrum of bridge deflection signal.
Multi-fractal spectrum of bridge deflection signal.

M. Jin, Y. Jiang, Application Analysis of Dynamic Strain Measurement in Bridge Dynamic Deflection Identification, Highway Engineering, 45(01):190-194, 2020 Search in Google Scholar

A. Langi, W. Kinsner. Singularity processing of nonstationary signals, in Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering. IEEE, 1996, 2: 687-691. Search in Google Scholar

X. Tang, Z. Liang, A method of bridge health diagnosis based on statistical process control of live load effect, highways & automotive applcations, 03:176-180, 2014 Search in Google Scholar

S. Hu, R. Li, M. Bao, et al. Bridge deflection sensor fault diagnosis research based on PCA, Transducer and Microsystem Technologies, 33(06):9-12, 2014 Search in Google Scholar

J. Yang, D. Liu, Diagnosis of the bridge system damage based on multi-fractal, in Proceedings of 2016 World Automation Congress, 2016: 1-5. Search in Google Scholar

Z. Liang, Y. Hu, K. Zhang, Research of Data Drive Processing Method of Bridge Health Monitoring Information, Computer Technology and Development, 23(10): 258-261, 2013 Search in Google Scholar

Z. Peng, Y. He, Q. Lu, et al. Wavelet Multifractal Spectrum: Application to Analysis Vibration Signals. Journal of Mechanical Engineering, 38(8):59-63, 2002. Search in Google Scholar

Y. He, T. Wang, J. Wan, et al. Research on fractal box dimension anti-noise performance and its application in fault diagnosis. Chinese Journal of Scientific Instrument, 32(3):540-545, 2011. Search in Google Scholar

JW. Kantelhardt, SA. Zschiegner, Bunde EK, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series, Physica A, 316:87–114, 2002. Search in Google Scholar

J. Ding, L. Zhao and D. Huang, On Fault Diagnosis of Gear Box Based on De-Trending Multifractal, in Proceedings of 2018 IEEE 7th Data Driven Control and Learning Systems Conference. 2018:830-835, Search in Google Scholar

P. Shang, Y. Lu, K. Santi, Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis, Solitons & Fractals, 36 (1):82-90, 2008. Search in Google Scholar

J. Kantelhardt, H. Regoa and S. Havlin, Detecting Long-range Correlations with Detrended Fluctuation Analysis, Physica, 295(3/4): 441-454, 2001. Search in Google Scholar

J. Lin, C. Dou, and N. Zhang, Fault Diagnosis of Gearbox based on Multifractal Detrended Cross- correlation Analysis, Journal of Mechanical Transmission, 40(01): 91-94+105, 2016. Search in Google Scholar

Artículos recomendados de Trend MD