Acceso abierto

Optical soliton solutions to a (2+1) dimensional Schrödinger equation using a couple of integration architectures


Cite

Olver P.J., Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media (2000). OlverP.J. Applications of Lie groups to differential equations 107 Springer Science & Business Media 2000 Search in Google Scholar

Moleleki L. D., Motsepa T., Khalique C.M., Solutions and conservation laws of a generalized second extended (3+1)-dimensional Jimbo-Miwa equation, Applied Mathematics and Nonlinear Sciences 3(2018) 459–474. MolelekiL. D. MotsepaT. KhaliqueC.M. Solutions and conservation laws of a generalized second extended (3+1)-dimensional Jimbo-Miwa equation Applied Mathematics and Nonlinear Sciences 3 2018 459 474 10.2478/AMNS.2018.2.00036 Search in Google Scholar

Khalique C.M., Adeyemo O. D., Simbanefayi I., On optimal system, exact solutions and conservation laws of the modified equal-width equation, Applied Mathematics and Nonlinear Sciences 3(2018) 409–418 KhaliqueC.M. AdeyemoO. D. SimbanefayiI. On optimal system, exact solutions and conservation laws of the modified equal-width equation Applied Mathematics and Nonlinear Sciences 3 2018 409 418 10.21042/AMNS.2018.2.00031 Search in Google Scholar

Hirota R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Physical Review Letters, 27(18) (1971), 1192. HirotaR. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons Physical Review Letters 27 18 1971 1192 10.1103/PhysRevLett.27.1192 Search in Google Scholar

Conte, R. (Ed.). (2012). The Painlevé property: one century later. Springer Science & Business Media. ConteR. (Ed.). 2012 The Painlevé property: one century later Springer Science & Business Media Search in Google Scholar

Hirota, R., & Satsuma, J. (1976). A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Progress of Theoretical Physics Supplement, 59, 64–100. HirotaR. SatsumaJ. 1976 A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice Progress of Theoretical Physics Supplement 59 64 100 10.1143/PTPS.59.64 Search in Google Scholar

Gu, Chaohao, Hu, Anning, Zhou, Zixiang, 2005, Darboux Transformations in Integrable Systems, Theory and their Applications to Geometry., Springer-Verlag. GuChaohao HuAnning ZhouZixiang 2005 Darboux Transformations in Integrable Systems, Theory and their Applications to Geometry Springer-Verlag 10.1007/1-4020-3088-6 Search in Google Scholar

Kudryashov N A., Simplest equation method to look for exact solutions of nonlinear dierential equations. Chaos, Solitons & Fractals 24(5) (2005), 1217–1231. KudryashovN A. Simplest equation method to look for exact solutions of nonlinear dierential equations Chaos, Solitons & Fractals 24 5 2005 1217 1231 10.1016/j.chaos.2004.09.109 Search in Google Scholar

Wang M., Zhou Y., Li Z., Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Physics Letters A, 216 (1–5) (1996), 67–75. WangM. ZhouY. LiZ. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics Physics Letters A 216 1–5 1996 67 75 10.1016/0375-9601(96)00283-6 Search in Google Scholar

He J.H., Wu X.H., Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals, 30(3) (2006), 700–708. HeJ.H. WuX.H. Exp-function method for nonlinear wave equations Chaos, Solitons & Fractals 30 3 2006 700 708 10.1016/j.chaos.2006.03.020 Search in Google Scholar

Wazwaz A.M., A sine-cosine method for handling nonlinear wave equations. Mathematical and Computer modelling, 40(5–6) (2004), 499–508. WazwazA.M. A sine-cosine method for handling nonlinear wave equations Mathematical and Computer modelling 40 5–6 2004 499 508 10.1016/j.mcm.2003.12.010 Search in Google Scholar

Lou S.Y., Hu X.B., Infinitely many Lax pairs and symmetry constraints of the KP equation. Journal of Mathematical Physics, 38(12) (1997), 6401–6427. LouS.Y. HuX.B. Infinitely many Lax pairs and symmetry constraints of the KP equation Journal of Mathematical Physics 38 12 1997 6401 6427 10.1063/1.532219 Search in Google Scholar

Novikov, S., Manakov, S. V., Pitaevskii, L. P., & Zakharov, V. E. (1984). Theory of solitons: the inverse scattering method. Springer Science & Business Media. NovikovS. ManakovS. V. PitaevskiiL. P. ZakharovV. E. 1984 Theory of solitons: the inverse scattering method Springer Science & Business Media Search in Google Scholar

https://en.wikipedia.org/wiki/Nonlinear_Schr%C3%B6dinger_equation https://en.wikipedia.org/wiki/Nonlinear_Schr%C3%B6dinger_equation Search in Google Scholar

Malomed, Boris (2005), Nonlinear Schrödinger Equations, edited by A. Scott, Encyclopedia of Nonlinear Science, New York: Routledge, pp. 639–643 MalomedBoris 2005 Nonlinear Schrödinger Equations edited by ScottA. Encyclopedia of Nonlinear Science New York Routledge 639 643 Search in Google Scholar

Mason L J; and Spirling G A J 1992 3. (J Geom Phys. 8 243) MasonL J SpirlingG A J 1992 3. ( J Geom Phys. 8 243) Search in Google Scholar

Ward, R. S. (1981). Ansätze for self-dual Yang-Mills fields. Communications in Mathematical Physics, 80(4), 563–574. WardR. S. 1981 Ansätze for self-dual Yang-Mills fields Communications in Mathematical Physics 80 4 563 574 10.1007/BF01941664 Search in Google Scholar

Strachan, I. A. B. (1992). Wave solutions of a (2+1)-dimensional generalization of the nonlinear Schrödinger equation. Inverse Problems, 8(5), L21. StrachanI. A. B. 1992 Wave solutions of a (2+1)-dimensional generalization of the nonlinear Schrödinger equation Inverse Problems 8 5 L21 10.1088/0266-5611/8/5/001 Search in Google Scholar

Radha R, Lakshmanan M. Singularity structure analysis and bilinear form of a (2+1)-dimensional nonlinear SE. Inverse Probl. 1994;10:29–32. RadhaR LakshmananM Singularity structure analysis and bilinear form of a (2+1)-dimensional nonlinear SE Inverse Probl. 1994 10 29 32 10.1088/0266-5611/10/4/002 Search in Google Scholar

Zakharov V E 1980 Solitons ed R.K Bullough and P J Caudrey (Berlin: Springer) ZakharovV E 1980 Solitons ed BulloughR.K CaudreyP J Berlin Springer Search in Google Scholar

J Wang, L W Chen, C F Liu, Bifurcations and travelling wave solutions of a (2 + 1)-dimensional nonlinear Schrödinger equation, Applied Mathematics and Computation 249, 15, 2014, 76–80 WangJ ChenL W LiuC F Bifurcations and travelling wave solutions of a (2 + 1)-dimensional nonlinear Schrödinger equation Applied Mathematics and Computation 249 15 2014 76 80 10.1016/j.amc.2014.10.025 Search in Google Scholar

Muhammad Younis, Nadia Cheemaa, Syed Amer Mehmood, Syed Tahir Raza Rizvi & Ahmet Bekir (2018) A variety of exact solutions to (2+1)-dimensional schrödinger equation, Waves in Random and Complex Media, DOI: 10.1080/17455030.2018.1532131 YounisMuhammad CheemaaNadia MehmoodSyed Amer Raza RizviSyed Tahir BekirAhmet 2018 A variety of exact solutions to (2+1)-dimensional schrödinger equation Waves in Random and Complex Media 10.1080/17455030.2018.1532131 Open DOISearch in Google Scholar

Mohyud-Din, S. T., & Ali, A. (2017). Exp (−ϕ(ε))–expansion Method and Shifted Chebyshev Wavelets for Generalized Sawada-Kotera of Fractional Order. Fundamenta Informaticae, 151(1–4), 173–190. Mohyud-DinS. T. AliA. 2017 Exp (−ϕ(ε))–expansion Method and Shifted Chebyshev Wavelets for Generalized Sawada-Kotera of Fractional Order Fundamenta Informaticae 151 1–4 173 190 10.3233/FI-2017-1486 Search in Google Scholar

Zahran, E. H. (2015). Exact Traveling Wave Solution for Nonlinear Fractional Partial Differential Equation Arising in Soliton using the exp (−ϕ(ε))-Expansion Method. International Journal of Computer Applications, 109(13). ZahranE. H. 2015 Exact Traveling Wave Solution for Nonlinear Fractional Partial Differential Equation Arising in Soliton using the exp (−ϕ(ε))-Expansion Method International Journal of Computer Applications 109 13 Search in Google Scholar

Hosseini, K., Mayeli, P., Bekir, A., & Guner, O. (2018). Density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions. Communications in Theoretical Physics, 69(1), 1. HosseiniK. MayeliP. BekirA. GunerO. 2018 Density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions Communications in Theoretical Physics 69 1 1 10.1088/0253-6102/69/1/1 Search in Google Scholar

Kudryashov, N. A. (2012). One method for finding exact solutions of nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 17(6), 2248–2253. KudryashovN. A. 2012 One method for finding exact solutions of nonlinear differential equations Communications in Nonlinear Science and Numerical Simulation 17 6 2248 2253 10.1016/j.cnsns.2011.10.016 Search in Google Scholar

Ege, S. M., & Misirli, E. (2014). The modified Kudryashov method for solving some fractional-order nonlinear equations. Advances in Difference Equations, 2014(1), 135. EgeS. M. MisirliE. 2014 The modified Kudryashov method for solving some fractional-order nonlinear equations Advances in Difference Equations 2014 1 135 10.1186/1687-1847-2014-135 Search in Google Scholar

A. Stakhov, B. Rozin. On a new class of hyperbolic functions. Chaos, Solitons & Fractals, 2005, 23(2): 379–389. StakhovA. RozinB. On a new class of hyperbolic functions Chaos, Solitons & Fractals 2005 23 2 379 389 10.1016/j.chaos.2004.04.022 Search in Google Scholar

E. M. E. Zayed, K. A. E. Alurrfi, The modified Kudryashov method for solving some seventh order nonlinear PDEs in mathematical physics, World Journal of Modelling and Simulation Vol. 11 (2015) No. 4, pp. 308–319. ZayedE. M. E. AlurrfiK. A. E. The modified Kudryashov method for solving some seventh order nonlinear PDEs in mathematical physics World Journal of Modelling and Simulation 11 2015 4 308 319 Search in Google Scholar

Wazwaz, Abdul-Majid. The tanh method for generalized forms of nonlinear heat conduction and Burgers–Fisher equations. Applied Mathematics and Computation 169.1 (2005): 321–338. WazwazAbdul-Majid The tanh method for generalized forms of nonlinear heat conduction and Burgers–Fisher equations Applied Mathematics and Computation 169 1 2005 321 338 10.1016/j.amc.2004.09.054 Search in Google Scholar

Latif, M. S. (2015). The improved (G’/G)-expansion method is equivalent to the tanh method. arXiv preprint arXiv:1506.06025. LatifM. S. 2015 The improved (G’/G)-expansion method is equivalent to the tanh method arXiv preprint arXiv:1506.06025. Search in Google Scholar

Tariq, Hira, and Ghazala Akram. New traveling wave exact and approximate solutions for the nonlinear Cahn–Allen equation: evolution of a nonconserved quantity. Nonlinear Dynamics 88.1 (2017): 581–594. TariqHira AkramGhazala New traveling wave exact and approximate solutions for the nonlinear Cahn–Allen equation: evolution of a nonconserved quantity Nonlinear Dynamics 88 1 2017 581 594 10.1007/s11071-016-3262-7 Search in Google Scholar

eISSN:
2444-8656
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics