This work is licensed under the Creative Commons Attribution 4.0 International License.
De Zélicourt, D. A., Pekkan, K., Wills, L., et al. (2005). In vitro flow analysis of a patient-specific intraatrial total cavopulmonary connection. Annals of Thoracic Surgery, 79(6), 2094-2102. https://doi.org/10.1016/j.athoracsur.2004.12.052De ZélicourtD. A.PekkanK.WillsL. (2005). In vitro flow analysis of a patient-specific intraatrial total cavopulmonary connection. Annals of Thoracic Surgery, 79(6), 2094-2102. https://doi.org/10.1016/j.athoracsur.2004.12.052Search in Google Scholar
Kung, E., Kahn, A. M., Burns, J. C., et al. (2014). In vitro validation of patient-specific hemodynamic simulations in coronary aneurysms caused by Kawasaki disease. Cardiovascular Engineering and Technology, 5(2), 189-201. https://doi.org/10.1007/s13239-014-0184-8KungE.KahnA. M.BurnsJ. C. (2014). In vitro validation of patient-specific hemodynamic simulations in coronary aneurysms caused by Kawasaki disease. Cardiovascular Engineering and Technology, 5(2), 189-201. https://doi.org/10.1007/s13239-014-0184-8Search in Google Scholar
Kung, E. O., Les, A. S., Figueroa, C. A., et al. (2011). In vitro validation of finite element analysis of blood flow in deformable models. Annals of Biomedical Engineering, 39(7), 1947-1960. https://doi.org/10.1007/s10439-011-0284-7KungE. O.LesA. S.FigueroaC. A. (2011). In vitro validation of finite element analysis of blood flow in deformable models. Annals of Biomedical Engineering, 39(7), 1947-1960. https://doi.org/10.1007/s10439-011-0284-7Search in Google Scholar
Kung, E. O., Les, A. S., Medina, F., et al. (2011). In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. Journal of Biomechanical Engineering, 133(4), 1-11. https://doi.org/10.1115/1.4003526KungE. O.LesA. S.MedinaF. (2011). In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. Journal of Biomechanical Engineering, 133(4), 1-11. https://doi.org/10.1115/1.4003526Search in Google Scholar
Zhu, J., Wang, J., & Mao, J. (2024). Study on performance of new liquid cold plate and optimization of full CFD model. Low Temperature and Superconductivity, 52(2), 60-67. https://doi.org/10.1109/6144.833042ZhuJ.WangJ.MaoJ. (2024). Study on performance of new liquid cold plate and optimization of full CFD model. Low Temperature and Superconductivity, 52(2), 60-67. https://doi.org/10.1109/6144.833042Search in Google Scholar
Wu, J., Dai, S., Zhang, G., Wang, X. S., Zhao, Y., & Wu, Y. (2024). Quasi-3D CFD simulation algorithm for the heat transfer process of steam condenser flow. Journal of Tsinghua University (Natural Science Edition, 26, 1-9. https://doi.org/10.16511/j.cnki.qhdxxb.2024.21.011WuJ.DaiS.ZhangG.WangX. S.ZhaoY.WuY. (2024). Quasi-3D CFD simulation algorithm for the heat transfer process of steam condenser flow. Journal of Tsinghua University (Natural Science Edition, 26, 1-9. https://doi.org/10.16511/j.cnki.qhdxxb.2024.21.011Search in Google Scholar
Hu, Z., Zhu, Y., Shen, C., Guo, E., & Jin, K. (2022). Research and optimization based on CFD. Journal of Drainage and Irrigation Mechanical Engineering, 38(3), 1-9.HuZ.ZhuY.ShenC.GuoE.JinK. (2022). Research and optimization based on CFD. Journal of Drainage and Irrigation Mechanical Engineering, 38(3), 1-9.Search in Google Scholar
Song, Z., Zhu, J., & Dong, L. (2021). Wing propulsion performance optimization based on combining neural network and CFD. Aerodynamics, 16(2), 1-12.SongZ.ZhuJ.DongL. (2021). Wing propulsion performance optimization based on combining neural network and CFD. Aerodynamics, 16(2), 1-12.Search in Google Scholar
Sankaran, S., & Marsden, A. L. (2011). A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. Journal of Biomechanical Engineering, 133(3), 1-12. https://doi.org/10.1115/1.4003259SankaranS.MarsdenA. L. (2011). A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. Journal of Biomechanical Engineering, 133(3), 1-12. https://doi.org/10.1115/1.4003259Search in Google Scholar
Schiavazzi, D. E., Arbia, G., Baker, C., et al. (2016). Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. International Journal for Numerical Methods in Biomedical Engineering, 32(3), 27-37. https://doi.org/10.1002/cnm.2737SchiavazziD. E.ArbiaG.BakerC. (2016). Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. International Journal for Numerical Methods in Biomedical Engineering, 32(3), 27-37. https://doi.org/10.1002/cnm.2737Search in Google Scholar
Tran, J. S., Schiavazzi, D. E., Ramachandra, A. B., et al. (2017). Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Computers & Fluids, 142, 128-138. https://doi.org/10.1016/j.compfluid.2016.05.015TranJ. S.SchiavazziD. E.RamachandraA. B. (2017). Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Computers & Fluids, 142, 128-138. https://doi.org/10.1016/j.compfluid.2016.05.015Search in Google Scholar
Sarrami-Foroushani, A., Lassila, T., Gooya, A., et al. (2016). Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability. Journal of Biomechanics, 49(16), 3815-3823. https://doi.org/10.1016/j.jbiomech.2016.10.005Sarrami-ForoushaniA.LassilaT.GooyaA. (2016). Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability. Journal of Biomechanics, 49(16), 3815-3823. https://doi.org/10.1016/j.jbiomech.2016.10.005Search in Google Scholar
Troianowski, G., Taylor, C. A., Feinstein, J. A., et al. (2011). Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. Journal of Biomechanical Engineering, 133(11), 16-18. https://doi.org/10.1115/1.4005377TroianowskiG.TaylorC. A.FeinsteinJ. A. (2011). Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. Journal of Biomechanical Engineering, 133(11), 16-18. https://doi.org/10.1115/1.4005377Search in Google Scholar
Xie, J., Frazier, P. I., Sankaran, S., et al. (2012). Optimization of computationally expensive simulations with Gaussian processes and parameter uncertainty. Annual Allerton Conference on Communication, Control, and Computing, 406-413.XieJ.FrazierP. I.SankaranS. (2012). Optimization of computationally expensive simulations with Gaussian processes and parameter uncertainty. Annual Allerton Conference on Communication, Control, and Computing, 406-413.Search in Google Scholar
Li, Z., Liu, X., & Zhang, Y. (2012). Simulation and study on the influence of nozzle structure parameters on jet flow field. Coal Mine Machinery, 33(1), 63-65.LiZ.LiuX.ZhangY. (2012). Simulation and study on the influence of nozzle structure parameters on jet flow field. Coal Mine Machinery, 33(1), 63-65.Search in Google Scholar
Chen, B., Wang, H., Wu, J., et al. (2018). Numerical simulation and working characteristic analysis of the needle-free syringe. China Mechanical Engineering, 19(2), 196-199.ChenB.WangH.WuJ. (2018). Numerical simulation and working characteristic analysis of the needle-free syringe. China Mechanical Engineering, 19(2), 196-199.Search in Google Scholar
Yu, C., & Walter, M. (2019). Needleless injectors for the administration of vaccines: A review of clinical effectiveness. Allergy, 74(11), 2277-2279. https://doi.org/10.1111/all.13926YuC.WalterM. (2019). Needleless injectors for the administration of vaccines: A review of clinical effectiveness. Allergy, 74(11), 2277-2279. https://doi.org/10.1111/all.13926Search in Google Scholar
Li, S., Sun, Z., Li, Z., Li, X., Luo, C., Li, H., Sun, X., & Liu, W. (2024). Research and application of typical topographic atmospheric CFD mode based on autonomous software. Aerodynamics Journal, 37(7), 204-219. https://doi.org/10.1016/j.cja.2024.02.020LiS.SunZ.LiZ.LiX.LuoC.LiH.SunX.LiuW. (2024). Research and application of typical topographic atmospheric CFD mode based on autonomous software. Aerodynamics Journal, 37(7), 204-219. https://doi.org/10.1016/j.cja.2024.02.020Search in Google Scholar