Construction of dynamic update and adaptive prediction model for user profile based on time series analysis
y
17 mar 2025
Acerca de este artículo
Publicado en línea: 17 mar 2025
Recibido: 26 oct 2024
Aceptado: 08 feb 2025
DOI: https://doi.org/10.2478/amns-2025-0295
Palabras clave
© 2025 Jin Li et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

The performance of each model on different indicators
Model | F1 | Accuracy/% | Precision/% | AUC | Training time/s |
---|---|---|---|---|---|
LR | 0.894 | 83.62 | 91.94 | 0.731 | 7.18 |
SVM | 0.925 | 87.4 | 91.07 | 0.803 | 187 |
DT | 0.915 | 88.52 | 88.38 | 0.898 | 2.56 |
XGBoost | 0.941 | 88.9 | 91.12 | 0.911 | 12.3 |
LightGBM | 0.903 | 89.07 | 91.83 | 0.888 | 7.13 |
DCNN | 0.902 | 89.1 | 92.11 | 0.887 | 1211 |
DF | 0.909 | 89.9 | 89.08 | 0.833 | 61.12 |
DF+TAM+AWS | 0.934 | 92.3 | 93.11 | 0.891 | 67.99 |
Various cascade forest classification prediction assessment
Cascade forest | F1/% | Accuracy/% | Training time/s |
---|---|---|---|
RF+ET+XGB+LR | 93.57% | 88.83% | 242 |
RF+ET+XGB | 93.32% | 89.81% | 93 |
RF+ET | 93.00% | 88.52% | 21 |
RF+XGB | 93.09% | 88.86% | 72 |
ET+XGB | 92.01% | 88.65% | 79 |
Model training time assessment performance
Parameter | RF | ET | XGB |
---|---|---|---|
5 | 34.51 | 34.51 | 62.07 |
15 | 44.06 | 77.88 | 386.61 |
25 | 58.94 | 113.87 | 465.48 |
90 | 77.39 | 156.79 | 544.03 |
120 | 87.5 | 210.65 | 698 |
150 | 103.96 | 317.6 | 852.12 |
180 | 125.07 | 469.42 | 998.66 |
The performance of the training time
Parameter | RF | ET | XGB |
---|---|---|---|
10 | 21.89 | 32.33 | 68.63 |
25 | 24.4 | 44.71 | 297.96 |
40 | 23.43 | 30.35 | 485.38 |
55 | 24.01 | 27.02 | 537.97 |
70 | 23.99 | 27.02 | 557.08 |
85 | 23.02 | 29.29 | 554.83 |
100 | 21.89 | 38.67 | 492.63 |
The parameters of the model parameters in the cascade forest
Model | n_estimate | maxdepth |
---|---|---|
RF | 15 | 15 |
ET | 25 | 25 |
XGB | 5 | 5 |
Model accuracy assessment performance
Parameter | RF | ET | XGB |
---|---|---|---|
5 | 0.8898 | 0.8852 | 0.8906 |
15 | 0.8905 | 0.8863 | 0.8908 |
25 | 0.8908 | 0.8867 | 0.8912 |
90 | 0.8914 | 0.8872 | 0.8917 |
120 | 0.8911 | 0.8867 | 0.8909 |
150 | 0.8911 | 0.8869 | 0.8907 |
180 | 0.8914 | 0.8877 | 0.8911 |
Accuracy evaluation
Parameter | RF | ET | XGB |
---|---|---|---|
5 | 0.8897 | 0.8635 | 0.8907 |
15 | 0.8898 | 0.8837 | 0.8869 |
25 | 0.889 | 0.8812 | 0.8866 |
90 | 0.8882 | 0.8811 | 0.8875 |
120 | 0.8882 | 0.8808 | 0.8873 |
150 | 0.888 | 0.8804 | 0.8872 |
180 | 0.8876 | 0.8801 | 0.8871 |
Experimental results
Behavior pattern | Experimental group | Control group | P |
---|---|---|---|
t_total | 37965 | 38044 | 0.013 |
n_total | 2365 | 2306 | 0.005 |
g_tests | 7.18 | 6.84 | 0.236 |
n_rec lp/n_unrec lp | 2.74 | 2.59 | 0.049 |
t_rec lo/t_unrec lo | 2.75 | 0.59 | 0.002 |
n_rec lo/n_unrec lo | 3.66 | 0.94 | 0.003 |