Feature Analysis and Application of Music Works Based on Artificial Neural Network
y
27 feb 2025
Acerca de este artículo
Publicado en línea: 27 feb 2025
Recibido: 04 oct 2024
Aceptado: 26 ene 2025
DOI: https://doi.org/10.2478/amns-2025-0130
Palabras clave
© 2025 Yu Wang et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

characteristics
Feature number | Feature name | Characteristic dimension |
---|---|---|
1 | zero crossing rate | 1 |
2 | root mean square | 1 |
3 | spectral centroid | 1 |
4 | spectralroll-off frequency | 1 |
5 | spectral contrast | 7 |
6 | MFCC | 12 |
experimental results
structure | Rnet1 | Rnet2 | Rnet3 | Rnet4 | Rnet5 |
---|---|---|---|---|---|
Circulation layer (128) | ✓ | ✓ | ✓ | ✓ | ✓ |
Circulation layer (128) | ✓ | ✓ | ✓ | ✓ | |
Circulation layer (128) | ✓ | ✓ | ✓ | ||
Circulation layer (128) | ✓ | ✓ | |||
Circulation layer (128) | ✓ | ||||
Pooling | Last | Last | Last | Last | Last |
Full connection (256) | ReLU | ReLU | ReLU | ReLU | ReLU |
Full connection (256) | ReLU | ReLU | ReLU | ReLU | ReLU |
Full connection (10/6) | Softmax | Softmax | Softmax | Softmax | Softmax |
data set table
data set | GTAZN | ISMIR2022 |
---|---|---|
Rnetl | 78.32% | 78.41% |
Rnet2 | 79.67% | 79.53% |
Rnet3 | 80.14 | 81.22% |
Rnet4 | 79.09% | 81.30 |
Rnet5 | 77.73% | 78.05% |