A group intelligence optimisation method for privacy protection problems in smart home environments
03 feb 2025
Acerca de este artículo
Publicado en línea: 03 feb 2025
Recibido: 04 oct 2024
Aceptado: 02 ene 2025
DOI: https://doi.org/10.2478/amns-2025-0028
Palabras clave
© 2025 Jiaze Yu, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Energy consumption contrast
ACA | FVR | ||
---|---|---|---|
System1 | System2 | Difference value | |
0.1 | 29.98 | 17.93 | 12.05 |
0.2 | 22.17 | 12.26 | 9.91 |
0.3 | 18.54 | 9.88 | 8.66 |
0.4 | 13.92 | 6.57 | 7.35 |
0.5 | 10.05 | 3.85 | 6.2 |
0.6 | 8.54 | 2.51 | 6.03 |
0.7 | 6.18 | 2.12 | 4.06 |
0.8 | 4.23 | 1.57 | 2.66 |
0.9 | 2.93 | 0.88 | 2.05 |
Computational overhead
Method | User(ms) | Server(ms) | Registration center(ms) | Total cost(ms) |
---|---|---|---|---|
Logistic | 0.076 | 0.044 | - | 0.119 |
FPGA | 25.086 | 32.199 | - | 57.285 |
LoRa | 0.075 | 0.058 | 0.150 | 0.283 |
OFDM | 10.497 | 10.462 | - | 20.959 |
ECC | 0.090 | 0.064 | 0.149 | 0.303 |
ZYNQ | 12.727 | 12.951 | - | 25.678 |
M-LVDS | 0.086 | 0.054 | - | 0.139 |
DSP | 0.076 | 0.037 | - | 0.113 |
Methods of this article | 0.030 | 0.039 | - | 0.068 |