Acceso abierto

Research and development of low-energy and high-efficiency wind-fed tobacco technology


Cite

Wang, H., Xin, H., Liao, Z., Li, J., Xie, W., & Zeng, Q., et al. (2014). Study on the effect of cut tobacco drying on the pyrolysis and combustion properties. Drying Technology, 32(2), 130-134. Search in Google Scholar

Liu, J. T., Li, M., Yu, Q. F., & Ling, D. L. (2014). A novel parabolic trough concentrating solar heating for cut tobacco drying system. International Journal of Photoenergy, 2014, 1-10. Search in Google Scholar

Liu, Z., Xiang, K., Jin, Z., Wang, X., & Pan, S. (2022). Visual detection of residual cut tobacco based on multi-feature fusion and markov random field. Journal of electronic imaging. Search in Google Scholar

Zhou, F., Peng, H., Ruan, W., Wang, D., Liu, M., & Gu, Y., et al. (2018). Cubic-rbf-arx modeling and model-based optimal setting control in head and tail stages of cut tobacco drying process. Neural Computing and Applications. Search in Google Scholar

Pendleton, D. (2023). Pneumatic conveying basics. Chemical Engineering(4), 130. Search in Google Scholar

Zhou, F., Hu, S., Liu, Y., Liu, C., Xia, T., & Key Laboratory of Cas and Fire Control for Coal Mines, et al. (2014). Cfd-dem simulation of the pneumatic conveying of fine particles through a horizontal slit. Particuology. Search in Google Scholar

He, L., Yang, Y., Huang, Z., Liao, Z., Wang, J., & Yang, Y. (2016). Multi-scale analysis of acoustic emission signals in dense-phase pneumatic conveying of pulverized coal at high pressure. AIChE Journal. Search in Google Scholar

Chen, C., Shen, F., & Dai, C. (2023). Swintd: transformer-based detection network for foreign objects in the cut section of tobacco packets. Measurement. Search in Google Scholar

Wu, K., Zhang, E., Yuan, Z., Li, B., & Luo, D. (2020). Analysis of flexible ribbon particle residence time distribution in a fluidised bed riser using three-dimensional cfd-dem simulation. Powder Technology, 369(2). Search in Google Scholar

Feifei Fu, Chuanlong Xu, & Shimin Wang. (2018). Flow characterization of high-pressure dense-phase pneumatic conveying of coal powder using multi-scale signal analysis. Particuology, 36(1). Search in Google Scholar

Maynard, E. (2022). Dilute or dense phase pneumatic conveying?. Chemical Engineering Progress(11), 118. Search in Google Scholar

Ping, W., Xing, Y., Lenian, Z., & Rong, X. (2014). Research for different sampling mechanism in tobacco vibration separator system. Electrical Engineering, 15(08), 33-35. Search in Google Scholar

Schmitt, R., & Sobrinho, M. R. S. (2018). Nonlinear dynamic modeling of a pneumatic process control valve. IEEE Latin America Transactions, 16(4), 1070-1075. Search in Google Scholar

Koike, M., Nakata, T., Zhang, F., & Tahara, J. (2019). Vibration control for pneumatic isolation table with feedforward control input. Electrical Engineering in Japan. Search in Google Scholar

Yang, G., Du, J. M., Fu, X. Y., & Li, B. R. (2017). Asymmetric fuzzy control of a positive and negative pneumatic pressure servo system. Chinese Journal of Mechanical Engineering, v.30(06), 164-172. Search in Google Scholar

Feng, S., Jia, W., Yan, J., Wang, C., & Zhang, K. (2020). A new method of flow blockage collapsing in the horizontal pipe: the pipe-rotation mechanism. International Journal of Chemical Reactor Engineering, 18(8), 261-8. Search in Google Scholar

Yang, C., Cui, Z., Xue, Q., Wang, H., Zhang, D., & Geng, Y. (2014). Application of a high speed ect system to online monitoring of pneumatic conveying process. Measurement, 48, 29-42. Search in Google Scholar

Wang, C., Jia, L., & Gao, W. (2020). Electrostatic sensor for determining the characteristics of particles moving from deposition to suspension in pneumatic conveying. IEEE sensors journal(20-2). Search in Google Scholar

eISSN:
2444-8656
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics