An empirical study on the innovation of vocational education technology to construct a new classroom teaching mode in the context of new media
Publicado en línea: 31 ene 2024
Recibido: 13 dic 2023
Aceptado: 22 dic 2023
DOI: https://doi.org/10.2478/amns-2024-0066
Palabras clave
© 2024 Fang Han, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
In this paper, the convergence and generalization performance of Random Forest is used to improve the classification accuracy of target variables, and the robustness and classification accuracy of Random Forest is dramatically improved by conditional Random Forest, which is trained to generate a Random Forest model for head pose estimation. The improved random forest algorithm is designed using logistic regression, and a new classroom teaching model for vocational education is constructed using the improved random forest algorithm. Taking the students of secondary school A in G city as the research object, the teaching model constructed in this study is applied to the classroom of “Information Technology Teaching Literacy” and empirically analyzed from three aspects: the cognitive level of learners, the emotional state and the comparison of students’ performance. The results show that compared with the achievement before teaching, after the teaching is finished, the student’s achievement improves greatly by 0.2542, and the average score is 86.49, which is 18.28. It shows that the teaching practice of the new classroom teaching design of vocational education in this paper has significant results, which can improve the student’s learning achievement and effectively enhance learning efficiency.