Cite

World Health Organization. Geneva: World Health Organization . 2023. Epilepsy fact sheet. Search in Google Scholar

Mohammadzadeh P, Nazarbaghi S. The prevalence of drug-resistant-epilepsy and its associated factors in patients with epilepsy. Clin Neurol Neurosurg . 2022;213:107086. Search in Google Scholar

Avanzini G, Franceschetti S. Mechanisms of Epileptogenesis. In: Simon Shorvon, Emilio Perucca, Jerome Engel, editors. The Treatment of Epilepsy. Fourth Edition. John Wiley & Sons; 2016. p. 38–51. Search in Google Scholar

Savjani KT, Gajjar AK, Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012 Jul 5;2012:1–10. Search in Google Scholar

Johannessen Landmark C, Johannessen SI, Tomson T. Host factors affecting antiepileptic drug delivery—Pharmacokinetic variability. Adv Drug Deliv Rev . 2012;64(10):896–910. Search in Google Scholar

Fattorusso A, Matricardi S, Mencaroni E, Dell’Isola GB, Di Cara G, Striano P, et al. The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Vol. 12, Frontiers in Neurology. Frontiers Media S.A.; 2021. Search in Google Scholar

Löscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Vol. 12, Nature Reviews Drug Discovery. 2013. p. 757–76. Search in Google Scholar

Simonato M, Brooks-Kayal AR, Engel J, Galanopoulou AS, Jensen FE, Moshé SL, et al. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol. 2014 Sep;13(9):949—960. Search in Google Scholar

Löscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: Ways out of the current dilemma. Vol. 52, Epilepsia. 2011. p. 657–78. Search in Google Scholar

Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res . 2018;146:63–86. Search in Google Scholar

Burnham WM. Why are Complex Partial Seizures Intractable? In: Burnham W. McIntyre and Carlen PL and HPA, editor. Intractable Seizures: Diagnosis, Treatment, and Prevention. Boston, MA: Springer US; 2002. p. 107–10. Search in Google Scholar

Reddy DS, Kuruba R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Vol. 14, International Journal of Molecular Sciences. 2013. p. 18284–318. Search in Google Scholar

Albus K, Wahab A, Heinemann U. Standard antiepileptic drugs fail to block epileptiform activity in rat organotypic hippocampal slice cultures. Br J Pharmacol. 2008 Jun 14;154(3):709–24. Search in Google Scholar

Anderson WW, Lewis D V, Swartzwelder HS, Wilson WA. Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res. 1986;398:215–9. Search in Google Scholar

Heinemann U, Kann O, Schuchmann S. An Overview of In Vitro Seizure Models in Acute and Organotypic Slices. In: Models of Seizures and Epilepsy. 2006: 35–44. Search in Google Scholar

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Potassium Model for Slow (2-3 Hz) In Vivo Neocortical Paroxysmal Oscillations. J Neurophysiol. 2004;92(2):1116–32. Search in Google Scholar

Mody I, Lambert JDC, Heinemann U. Low Extracellular Magnesium Induces Epileptiform Activity and Spreading Depression in Rat Hippocampal Slices . Vol. 57, JOURNAL OF NEUROPHYSIOL~GY. 1987. Available from: www.physiology.org/journal/jn Search in Google Scholar

Johannessen SI, Gerna M, Bakke J, Strandjord RE, Morselli PL. CSF Concentrations and Serum Protein Binding of Carbamazepoine and Carbamazepine-10, 11-Epoxide in Epileptic Patients. Br J Clin Pharmacol. 1976;3(4):575–82. Search in Google Scholar

National Center for Biotechnology Information. 2024 [cited 2024 Jan 15]. PubChem Compound Summary for CID 2554, Carbamazepine. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Carbamazepine. Search in Google Scholar

Bonifácio MJ, Sheridan RD, Parada A, Cunha RA, Patmore L, Soares-Da-Silva P. Interaction of the novel anticonvulsant, BIA 2-093, with voltage-gated sodium channels: Comparison with carbamazepine. Epilepsia. 2001;42(5):600–8. Search in Google Scholar

Barzegar-Jalali M, Nayebi AM, Valizadeh H, Hanaee J, Barzegar-Jalali A, Adibkia K, et al. Evaluation of in vitro-in vivo correlation and anticonvulsive effect of carbamazepine after cogrinding with microcrystalline cellulose. Vol. 9, J Pharm Pharmaceut Sci (www.cspsCanada.org). 2006. Search in Google Scholar

Kumar R, Siril PF. Ultrafine carbamazepine nanoparticles with enhanced water solubility and rate of dissolution. RSC Adv. 2014;4(89):48101–8. Search in Google Scholar

Qushawy M, Prabahar K, Abd-Alhaseeb M, Swidan S, Nasr A. Preparation and evaluation of carbamazepine solid lipid nanoparticle for alleviating seizure activity in pentylenetetrazole-kindled mice. Molecules. 2019;24(21):3971. Search in Google Scholar

Scioli Montoto S, Sbaraglini ML, Talevi A, Couyoupetrou M, Di Ianni M, Pesce GO, et al. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces. 2018 Jul 1;167:73–81. Search in Google Scholar

Frijlink HW, Visser J, Hefting NR, Oosting R, Meijer DKF, Lerk CF. The Pharmacokinetics of P-Cyclodextrin and Hydroxypropyl-JJ-cyclodextrin in the Rat. Vol. 7, Pharmaceutical Research. 1990. Search in Google Scholar

Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system. Adv Drug Deliv Rev. 1999;36(1):125–41. Search in Google Scholar

Koester LS, Bertuol JB, Groch KR, Xavier CR, Moellerke R, Mayorga P, et al. Bioavailability of carbamazepine:β-cyclodextrin complex in beagle dogs from hydroxypropylmethylcellulose matrix tablets. Eur J Pharm Sci. 2004;22(2):201–7. Search in Google Scholar

Veszelka S, Mészáros M, Porkoláb G, Rusznyák Á, Réti-Nagy KS, Deli MA, et al. Effects of Hydroxypropyl-Beta-Cyclodextrin on Cultured Brain Endothelial Cells. Molecules. 2022 Nov 1;27(22):7738. Search in Google Scholar

Pytel M, Mercik K, Mozrzymas JW. Interaction between cyclodextrin and neuronal membrane results in modulation of GABA A receptor conformational transitions. Br J Pharmacol. 2006 Jun 8;148(4):413–22. Search in Google Scholar

Zhang ZJ, Koifman J, Shin DS, Ye H, Florez CM, Zhang L, et al. Transition to seizure: Ictal discharge is preceded by exhausted presynaptic GABA release in the hippocampal CA3 region. Journal of Neuroscience. 2012;32(7): 2499–2512. Search in Google Scholar

Wahab A, Albus K, Gabriel S, Heinemann U. In search of models of pharmacoresistant epilepsy. Epilepsia. 2010;51(s3):154–9. Search in Google Scholar

Quilichini PP, Diabira D, Chiron C, Milh M, Ben-Ari Y, Gozlan H. Effects of Antiepileptic Drugs on Refractory Seizures in the Intact Immature Corticohippocampal Formation In Vitro. Epilepsia. 2003;44(11):1365–74. Search in Google Scholar

D’Antuono M, Köhling R, Ricalzone S, Gotman J, Biagini G, Avoli M. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia. 2010;51(3):423–31. Search in Google Scholar

Gáll Z, Orbán-Kis K, Szilágyi T. Differential effects of sodium channel blockers on in vitro induced epileptiform activities. Arch Pharm Res. 2017 Jan 1;40(1):112–21. Search in Google Scholar

Rouaz K, Chiclana-Rodríguez B, Nardi-Ricart A, Suñé-Pou M, Mercadé-Frutos D, Suñé-Negre JM, et al. Excipients in the Paediatric Population: A Review. Pharmaceutics. 2021;13(3):387. Search in Google Scholar

Ahmed A. Does polyethylene glycol, used as an excipient at mRNA-based (Moderna, Pfizer) vaccines, cause an increase in the frequency of epilepsy in PWE? 2022. Search in Google Scholar

eISSN:
2668-7763
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other