Cite

1. Loo YY, Rukayadi Y, Nor-Khaizura M-A-R, Kuan CH, Chieng BW, Nishibuchi M, et al. In Vitro Antimicrobial Activity of Green Synthesized Silver Nanoparticles Against Selected Gram-negative Foodborne Pathogens. Frontiers in Microbiology. 2018;9:1555.10.3389/fmicb.2018.01555605494130061871Search in Google Scholar

2. Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Frontiers in Microbiology. 2018;9:2928.10.3389/fmicb.2018.02928628389230555448Search in Google Scholar

3. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016 Apr;4(2):10.1128/microbiolspec.VMBF-0016–2015.10.1128/microbiolspec.VMBF-0016-2015488880127227291Search in Google Scholar

4. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017 Feb 14;12:1227–49.10.2147/IJN.S121956531726928243086Search in Google Scholar

5. Qasim M, Udomluck N, Chang J, Park H, Kim K. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int J Nanomedicine. 2018 Jan 3;13:235–49.10.2147/IJN.S153485575720529379284Search in Google Scholar

6. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Frontiers in Microbiology. 2016;7:1831.10.3389/fmicb.2016.01831511054627899918Search in Google Scholar

7. Coman AN, Mare A, Tanase C, Bud E, Rusu A. Silver-Deposited Nanoparticles on the Titanium Nanotubes Surface as a Promising Antibacterial Material into Implants. Metals. 2021 Jan;11(1):92.10.3390/met11010092Search in Google Scholar

8. Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials (Basel). 2020 Feb 9;10(2):292.10.3390/nano10020292707517032050443Search in Google Scholar

9. Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents. 2017 Feb 1;49(2):137–52.10.1016/j.ijantimicag.2016.11.01128089172Search in Google Scholar

10. Arora N, Thangavelu K, Karanikolos GN. Bimetallic Nanoparticles for Antimicrobial Applications. Frontiers in Chemistry. 2020;8:412.10.3389/fchem.2020.00412732605432671014Search in Google Scholar

11. Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology. 2018 Feb 16;16(1):14.10.1186/s12951-018-0334-5581525329452593Search in Google Scholar

12. Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 2019 Sep 10;9(1):13071.10.1038/s41598-019-49444-y673684231506473Search in Google Scholar

13. Murphy M, Ting K, Zhang X, Soo C, Zheng Z. Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine. Journal of Nanomaterials. 2015 May 19;2015:e696918.10.1155/2015/696918Search in Google Scholar

14. Bankier C, Matharu RK, Cheong YK, Ren GG, Cloutman-Green E, Ciric L. Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations. Sci Rep. 2019 Nov 5;9(1):16074.10.1038/s41598-019-52473-2683156431690845Search in Google Scholar

15. Parlinska-Wojtan M, Kus-Liskiewicz M, Depciuch J, Sadik O. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent. Bioprocess Biosyst Eng. 2016;39:1213–23.10.1007/s00449-016-1599-4494569227083587Search in Google Scholar

16. Sorbiun M, Shayegan Mehr E, Ramazani A, Mashhadi Malekzadeh A. Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties. Nanochemistry Research. 2018 Jan 1;3(1):1–16.Search in Google Scholar

17. Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Frontiers in Chemistry. 2017;5:6.10.3389/fchem.2017.00006531841028271059Search in Google Scholar

18. Park Y. New Paradigm Shift for the Green Synthesis of Antibacterial Silver Nanoparticles Utilizing Plant Extracts. Toxicol Res. 2014 Sep;30(3):169–78.10.5487/TR.2014.30.3.169420674325343010Search in Google Scholar

19. Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020 Jul 11;10(20):8996–9031.10.7150/thno.45413741581632802176Search in Google Scholar

20. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari M. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine. 2018 Nov 27;13:8013–24.10.2147/IJN.S189295626736130568442Search in Google Scholar

21. Tanase C, Berta L, Coman NA, Roșca I, Man A, Toma F, et al. Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials (Basel). 2019 Oct 30;9(11):1541.10.3390/nano9111541691554631671587Search in Google Scholar

22. Tanase C, Berta L, Mare A, Man A, Talmaciu AI, Roșca I, et al. Biosynthesis of silver nanoparticles using aqueous bark extract of Picea abies L. and their antibacterial activity. Eur J Wood Prod. 2020 Mar 1;78(2):281–91.10.1007/s00107-020-01502-3Search in Google Scholar

23. Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, et al. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Frontiers in Microbiology. 2018;9:1639.10.3389/fmicb.2018.01639606664830087662Search in Google Scholar

24. Elisha IL, Botha FS, McGaw LJ, Eloff JN. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary and Alternative Medicine. 2017 Feb 28;17(1):133.10.1186/s12906-017-1645-z532991728241818Search in Google Scholar

25. Tanase C, Berta L, Coman NA, Roșca I, Man A, Toma F, et al. Investigation of In Vitro Antioxidant and Antibacterial Potential of Silver Nanoparticles Obtained by Biosynthesis Using Beech Bark Extract. Antioxidants. 2019 Oct;8(10):459.10.3390/antiox8100459682705531597312Search in Google Scholar

26. Masum MdMI, Siddiqa MstM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, et al. Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus emblica Fruit Extract and Its Inhibitory Action Against the Pathogen Acidovorax oryzae Strain RS-2 of Rice Bacterial Brown Stripe. Frontiers in Microbiology. 2019;10:820.10.3389/fmicb.2019.00820650172931110495Search in Google Scholar

27. Cheeseman S, Christofferson AJ, Kariuki R, Cozzolino D, Daeneke T, Crawford RJ, et al. Antimicrobial Metal Nanomaterials: From Passive to Stimuli-Activated Applications. Advanced Science. 2020;7(10):1902913.10.1002/advs.201902913723785132440470Search in Google Scholar

28. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, et al. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans.” Front Microbiol. 2018 Jul 2;9:1441.10.3389/fmicb.2018.01441603660530013539Search in Google Scholar

29. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. International Journal of Molecular Sciences. 2021 Jan;22(13):7202.10.3390/ijms22137202826849634281254Search in Google Scholar

30. Gunawan C, Teoh WY, Marquis CP, Amal R. Induced adaptation of Bacillus sp. to antimicrobial nanosilver. Small. 2013 Nov 11;9(21):3554–60.10.1002/smll.20130076123625828Search in Google Scholar

31. Graves JL, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, et al. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet. 2015 Feb 17;6:42.10.3389/fgene.2015.00042433092225741363Search in Google Scholar

32. Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotech. 2018 Jan;13(1):65–71.10.1038/s41565-017-0013-y29203912Search in Google Scholar

33. Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S, Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J Toxicol Environ Health A. 2017;80(23–24):1276–89.10.1080/15287394.2017.137672729020531Search in Google Scholar

34. Ipe DS, Kumar PTS, Love RM, Hamlet SM. Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics. Frontiers in Microbiology. 2020;11:1074.10.3389/fmicb.2020.01074732604532670214Search in Google Scholar

35. Wang Y-W, Tang H, Wu D, Liu D, Liu Y, Cao A, et al. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci: Nano. 2016 Aug 4;3(4):788–98.10.1039/C6EN00031BSearch in Google Scholar

eISSN:
2668-7763
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other