Acceso abierto

Protein level alteration of endocannabinoid system components after chronic, oral self-administration of three atypical antipsychotics in rat


Cite

1 Stahl SM. Atypical antipsychotics. Stahl's Essent. Psychopharmacol. Neurosci. Basis Pract. Appl.,. 4`thCambridge: Cambridge University Press, 2013:141–169.Search in Google Scholar

2 Solmi M, Murru A, Pacchiarotti I, et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-ofthe-art clinical review. Ther Clin Risk Manag. 2017;13:757–777.10.2147/TCRM.S117321549979028721057Search in Google Scholar

3 Kun IZ, Szántó Z, Kun I, et al. Konvencionális és atípusos antipszichotikumok okozta metabolikus szindróma. Orvostudományi Értesítő. 2017;90:7–18.Search in Google Scholar

4 Citrome L. The ABC’s of dopamine receptor partial agonists - Aripiprazole, brexpiprazole and cariprazine: The 15-min challenge to sort these agents out. Int J Clin Pract. 2015;69:1211–1220.10.1111/ijcp.1275226477545Search in Google Scholar

5 Zimnisky R, Chang G, Gyertyán I, et al. Cariprazine, a dopamine D3-receptor-preferring partial agonist, blocks phencyclidine-induced impairments of working memory, attention set-shifting, and recognition memory in the mouse. Psychopharmacology (Berl). 2013;226:91–100.10.1007/s00213-012-2896-5357227323079899Search in Google Scholar

6 Corponi F, Fabbri C, Bitter I, et al. Novel antipsychotics specificity profile: A clinically oriented review of lurasidone, brexpiprazole, cariprazine and lumateperone. Eur Neuropsychopharmacol. 2019;29:971–985.10.1016/j.euroneuro.2019.06.00831255396Search in Google Scholar

7 Nasrallah HA. Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry. 2008;13:27–35.10.1038/sj.mp.400206617848919Search in Google Scholar

8 Horn H, Böhme B, Dietrich L, et al. Endocannabinoids in body weight control. Pharmaceuticals. 2018;11:1–48.10.3390/ph11020055602716229849009Search in Google Scholar

9 Bába L-I, Kolcsár M, Hack B, et al. Az endokannabinoid rendszer: receptoroktól a terápiáig (The endocannabinoid system: from the receptors to therapy). Orvostudományi Értesítő. 2019;92:1–14.Search in Google Scholar

10 Pertwee RG, Howlett a C, Abood ME, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands : Beyond CB 1 and CB 2. Pharmacol Rev. 2010;62:588–631.10.1124/pr.110.003004299325621079038Search in Google Scholar

11 Lu HC, MacKie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79:516–525.10.1016/j.biopsych.2015.07.028478913626698193Search in Google Scholar

12 Faah - Fatty-acid amide hydrolase 1 - Rattus norvegicus (Rat) - Faah gene & protein. Available at https://www.uniprot.org/uniprot/P97612 Accessed August 21, 2020.Search in Google Scholar

13 Mgll - Monoglyceride lipase - Rattus norvegicus (Rat) - Mgll gene & protein. Available at https://www.uniprot.org/uniprot/Q8R431 Accessed August 21, 2020.Search in Google Scholar

14 Matias I, Belluomo I, Cota D. The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis Cannabinoid Res. 2016;1:176–185.10.1089/can.2016.0014Search in Google Scholar

15 Gasperi V, Fezza F, Pasquariello N, et al. Endocannabinoids in adipocytes during differentiation and their role in glucose uptake. Cell Mol Life Sci. 2007;64:219–229.10.1007/s00018-006-6445-417187172Search in Google Scholar

16 Perwitz N, Fasshauer M, Klein J. Cannabinoid receptor signaling directly inhibits thermogenesis and alters expression of adiponectin and visfatin. Horm Metab Res. 2006;38:356–358.10.1055/s-2006-92540116718635Search in Google Scholar

17 Lazzari P, Serra V, Marcello S, et al. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur Neuropsychopharmacol. 2017;27:1–12.10.1016/j.euroneuro.2017.03.01028377074Search in Google Scholar

18 Liebig M, Gossel M, Pratt J, et al. Profiling of energy metabolism in olanzapine-induced weight gain in rats and its prevention by the CB1-antagonist AVE1625. Obesity (Silver Spring). 2010;18:1952–1958.10.1038/oby.2010.1720168311Search in Google Scholar

19 Minet-Ringuet J, Even PC, Valet P, et al. Alterations of lipid metabolism and gene expression in rat adipocytes during chronic olanzapine treatment. Mol Psychiatry. 2007;12:562–571.10.1038/sj.mp.400194817211438Search in Google Scholar

20 Bába L-I, Gáll Z, Kolcsár M, et al. Effect on Body Weight and Adipose Tissue by Cariprazine : A Head-to-Head Comparison Study to Olanzapine and Aripiprazole in Rats. Sci Pharm. 2020;88:1–14.10.3390/scipharm88040050Search in Google Scholar

21 Weston-Green K, Huang XF, Deng C. Olanzapine treatment and metabolic dysfunction: A dose response study in female Sprague Dawley rats. Behav Brain Res. 2011;217:337–346.10.1016/j.bbr.2010.10.03921056063Search in Google Scholar

22 De Santis M, Pan B, Lian J, et al. Different effects of Bifeprunox, Aripiprazole, and Haloperidol on body weight gain, food and water intake, and locomotor activity in rats. Pharmacol Biochem Behav. 2014;124:167–173.10.1016/j.pbb.2014.06.00424933333Search in Google Scholar

23 Watson DJG, King M V., Gyertyán I, et al. The dopamine D3-preferring D2/D3 dopamine receptor partial agonist, cariprazine, reverses behavioural changes in a rat neurodevelopmental model for schizophrenia. Eur Neuropsychopharmacol. 2016;26:208–224.10.1016/j.euroneuro.2015.12.02026723167Search in Google Scholar

24 Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–661.10.1096/fj.07-9574LSF17942826Search in Google Scholar

25 Eaton SL, Roche SL, Llavero Hurtado M, et al. Total Protein Analysis as a Reliable Loading Control for Quantitative Fluorescent Western Blotting. PLoS One. 2013;8:1–9.10.1371/journal.pone.0072457375829924023619Search in Google Scholar

26 Moritz CP. Tubulin or Not Tubulin: Heading Toward Total Protein Staining as Loading Control in Western Blots. Proteomics. 2017;17:1–12.10.1002/pmic.20160018928941183Search in Google Scholar

27 Welinder C, Ekblad L. Coomassie staining as loading control in Western blot analysis. J Proteome Res. 2011;10:1416–1419.10.1021/pr101147621186791Search in Google Scholar

28 Skrede S, Martins L, Berge RK, et al. Olanzapine depot formulation in rat: A step forward in modelling antipsychotic-induced metabolic adverse effects. Int J Neuropsychopharmacol. 2014;17:91–104.10.1017/S146114571300086223919889Search in Google Scholar

29 Weston-Green K, Huang XF, Deng C. Alterations to melanocortinergic, gabaergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain. PLoS One. 2012;7:1–12.10.1371/journal.pone.0033548330641122438946Search in Google Scholar

30 Nisoli E. Endocannabinoids and obesity development - The adipose tissue. Drug Discov Today Dis Mech. 2010;7:e199–e204.10.1016/j.ddmec.2010.12.002Search in Google Scholar

31 Engeli S, Böhnke J, Feldpausch M, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes. 2005;54:2838–2843.10.2337/diabetes.54.10.2838222826816186383Search in Google Scholar

32 Tam J, Godlewski G, Earley BJ, et al. Role of adiponectin in the metabolic effects of cannabinoid type 1 receptor blockade in mice with diet-induced obesity. Am J Physiol - Endocrinol Metab. 2014;306:E457-468.10.1152/ajpendo.00489.2013392309024381003Search in Google Scholar

33 Hu Y, Young AJ, Ehli E a., et al. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One. 2014;9:1–9.Search in Google Scholar

34 Skrede S, Fernø J, Vázquez MJ, et al. Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. Int J Neuropsychopharmacol. 2012;15:163–179.10.1017/S146114571100127121854679Search in Google Scholar

35 André A, Gonthier MP. The endocannabinoid system: Its roles in energy balance and potential as a target for obesity treatment. Int J Biochem Cell Biol. 2010;42:1788–1801.10.1016/j.biocel.2010.06.00220541029Search in Google Scholar

36 Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci. 2019;76:1341–1363.10.1007/s00018-018-2994-630599065Search in Google Scholar

37 Kale VP, Gibbs S, Taylor JA, et al. Preclinical toxicity evaluation of JD5037, a peripherally restricted CB1 receptor inverse agonist, in rats and dogs for treatment of nonalcoholic steatohepatitis. Regul Toxicol Pharmacol. 2019;109:1044983.Search in Google Scholar

38 Barutta F, Bellini S, Mastrocola R, et al. Reversal of albuminuria by combined AM6545 and perindopril therapy in experimental diabetic nephropathy. Br J Pharmacol. 2018;175:4371–4385.10.1111/bph.14495624013030184259Search in Google Scholar

39 Tan S, Liu H, Ke B, et al. The peripheral CB1 receptor antagonist JD5037 attenuates liver fibrosis via a CB1 receptor/β-arrestin1/Akt pathway. Br J Pharmacol. 2020;177:2830–2847.10.1111/bph.15010723606832017042Search in Google Scholar

eISSN:
2247-6113
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other