Acceso abierto

Transcription factors of the core feedback loop in the molecular circadian clock machinery: internal timekeeping and beyond

   | 06 abr 2021

Cite

1. Saini R, Jaskolski M, Davis SJ. Circadian oscillator proteins across the kingdoms of life: structural aspects. BMC Biology 2019;17:13-5210.1186/s12915-018-0623-3637874330777051Search in Google Scholar

2. Li S, Zhang L. Circadian Control of Global Transcription. BioMed Research International 2015;14:1-810.1155/2015/187809467084626682214Search in Google Scholar

3. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The Genetics of Mammalian Circadian Order and Disorder: Implications for Physiology and Disease. Nat Rev Genet. 2008;9(10):764–77510.1038/nrg2430375847318802415Search in Google Scholar

4. Umemura Y, Yagita K. Development of the Circadian Core Machinery in Mammals. J Mol Biol 2020; 29;432(12):3611-361710.1016/j.jmb.2019.11.02631931007Search in Google Scholar

5. Riede SJ, van der Vinne V, Hut RA. The flexible clock: predictive and reactive homeostasis, energy balance and the circadian regulation of sleep–wake timing. Journal of Experimental Biology 2017;220:738-74910.1242/jeb.13075728250173Search in Google Scholar

6. Maury E. Off the Clock: From Circadian Disruption to Metabolic Disease. Int. J. Mol. Sci. 2019;20(7):159710.3390/ijms20071597648001530935034Search in Google Scholar

7. Albrecht U, Ripperger JA. Clock Genes. In: Binder M.D., Hirokawa N., Windhorst U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg, 2019Search in Google Scholar

8. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Genet Review 2017;18:164–17910.1038/nrg.2016.150550116527990019Search in Google Scholar

9. Li X, Leisheng S, Zhang K et al. CirGRDB: a database for the genome-wide deciphering circadian genes and regulators. Nucleic Acids Research 2018;D1(46):D64–D7010.1093/nar/gkx944575320529059379Search in Google Scholar

10. Preußner M, Heyd F. Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch - Eur J Physiol 2016;468:983–99110.1007/s00424-016-1820-y489306127108448Search in Google Scholar

11. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Ann Rev Neurosci 2012;35:445–46210.1146/annurev-neuro-060909-153128371058222483041Search in Google Scholar

12. Honma S. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. The Journal of Physiological Sciences 2018;68:207–21910.1007/s12576-018-0597-529460036Search in Google Scholar

13. Rijo-Fereira F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Medicine 2019;11:8210.1186/s13073-019-0704-0691651231847894Search in Google Scholar

14. Zhang R, Lahens NF, Balance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: Implications for biology and medicine. PNAS 2014;111(45):16219-1622410.1073/pnas.1408886111423456525349387Search in Google Scholar

15. Edgar RS, Stangherlin A, Nagy AD, et al. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci U S A. 2016;113:10085–1009010.1073/pnas.1601895113501879527528682Search in Google Scholar

16. Okamura H, Doi M, Fustin JM, Yamaguchi Y, Matsuo M. Mammalian circadian clock system: Molecular mechanisms for pharmaceutical and medical sciences. Advanced Drug Delivery Reviews 2010;62:876–88410.1016/j.addr.2010.06.00420620185Search in Google Scholar

17. Ruben MD, Wu G, Smith DF, et al. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med. 2018;12;10(458):eaat880610.1126/scitranslmed.aat8806896134230209245Search in Google Scholar

18. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research. 2019;49(D1):D506–D515 - www.uniprot.org10.1093/nar/gky1049632399230395287Search in Google Scholar

19. Gene (Internet). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2020 – (cited 2020 Nov 28). Available from: https://www.ncbi.nlm.nih.gov/gene/Search in Google Scholar

20. HGNC Database, HUGO Gene Nomenclature Committee (HGNC), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom - www.genenames.org. (data retrieved January 2019)Search in Google Scholar

21. Online Mendelian Inheritance in Man, OMIM. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), July 2019. World Wide Web URL: https://omim.org/Search in Google Scholar

22. Andrew D Yates, Premanand Achuthan, Wasiu Akanni, et al. Ensembl 2020. Nucleic Acids Research. 2020;48(D1): D682–D688 - www. ensembl.orgSearch in Google Scholar

23. Mehra A, Baker CL, Loros JJ, Dunlap JC. Post-translational modifications in circadian rhythms. Trends Biochem Sci. 2009;34:483–49010.1016/j.tibs.2009.06.006276505719740663Search in Google Scholar

24. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15(2):R271–R27710.1093/hmg/ddl20716987893Search in Google Scholar

25. Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012;338:349–35410.1126/science.1226339369477522936566Search in Google Scholar

26. Bellet MM, Sassone-Corsi P. Mammalian circadian clock and metabolism – the epigenetic link. Journal of Cell Science 2010;123 (22):3837-384810.1242/jcs.051649297227121048160Search in Google Scholar

27. Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003;421:177-18210.1038/nature0131412483227Search in Google Scholar

28. Terajima H, Yoshitane H, Ozaki H, et al. ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat Genet 2017;49:146–15110.1038/ng.373127893733Search in Google Scholar

29. Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends in Cell Biology 2014;24(2):90-9910.1016/j.tcb.2013.07.002394676323916625Search in Google Scholar

30. Cox KH, Takahashi JS. Circadian clock genes and the transcriptional architecture of the clock mechanism. Journal of Molecular Endocrinology 2019;4(63):R93–R10210.1530/JME-19-0153687294531557726Search in Google Scholar

31. Mazzoccoli G, Pazienza V, Vinciguerra M. Clock Genes and Clock-Controlled Genes in the Regulation of Metabolic Rhythms. Chronobiology International 2012;29(3):227–25110.3109/07420528.2012.65812722390237Search in Google Scholar

32. Wang Z, Wy Y, Li L, Su XD. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res 2013;23:213-22410.1038/cr.2012.170356781323229515Search in Google Scholar

33. Ueda HR, Hayashi S, Chen W, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 2005;37:187–19210.1038/ng150415665827Search in Google Scholar

34. Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nature Reviews Molecular Cell Biology 2019;20: 227–24110.1038/s41580-018-0096-930635659Search in Google Scholar

35. Panda S. Circadian physiology of metabolism. Science 2016;354(6315):1008-101510.1126/science.aah4967726159227885007Search in Google Scholar

36. Pacheco-Bernal I, Pérez FB, Aguilar-Arnal L.Circadian rhythms in the three-dimensional genome: implications of chromatin interactions for cyclic transcription. Clinical Epigenetics 2019;11:79-9210.1186/s13148-019-0677-2652141331092281Search in Google Scholar

37. Ye R, Selby CP, Chiou YY, et al. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes & Development 2014;28:1989–199810.1101/gad.249417.114417315925228643Search in Google Scholar

38. Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350-36110.1038/nrc107212724733Search in Google Scholar

39. Stratmann M, Stadler F, Tamanini F, van der Horst GTJ, Ripperger JA. Flexible phase adjustment of circadian albumin D site-binding protein (Dbp) gene expression by CRY1. Genes & Development 2010;24:1317–132810.1101/gad.578810288566620551177Search in Google Scholar

40. Minami Y KL Ode, Ueda HR. Mammalian circadian clock: the roles of transcriptional repression and delay. Handb Exp Pharmacol. 2013;217:359-37710.1007/978-3-642-25950-0_1523604487Search in Google Scholar

41. Stelzer G, Rosen R, Plaschkes I, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analysis. Curr Protoc Bioinformatics. 2016;54:1.30.1-1.30.33 - www.genecards.org10.1002/cpbi.527322403Search in Google Scholar

42. Stojkovic K, Wing SS, Cermakian N. A central role for ubiquitination within a circadian clock protein modification code. Front Mol Neurosci. 2014;7:6910.3389/fnmol.2014.00069412479325147498Search in Google Scholar

43. Rey G, Reddy AB. Connecting cellular metabolism to circadian clocks. Trends in Cell Biology 2013: 23(5):234-24110.1016/j.tcb.2013.01.00323391694Search in Google Scholar

44. Mazzoccoli M, Pazienza V, Vinciguerra M. Clock Genes and Clock-Controlled Genes in the Regulation of Metabolic Rhythms. Chronobiology International 2012;29(3):227–25110.3109/07420528.2012.65812722390237Search in Google Scholar

45. Charrier A, Olliac B, Roubertoux P, Tordjman S. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders. Int J Mol Sci 2017;18:938-95010.3390/ijms18050938545485128468274Search in Google Scholar

46. Partonen T. Clock gene variants in mood and anxiety disorders. J Neural Transm 2012;119:1133–114510.1007/s00702-012-0810-222538398Search in Google Scholar

47. Albrecht U. Molecular mechanisms in mood regulation involving the circadian clock. Front Neurol 2017;8:3010.3389/fneur.2017.00030529381728223962Search in Google Scholar

48. Asher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 2011;13(2):125-13710.1016/j.cmet.2011.01.00621284980Search in Google Scholar

49. Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007; 447:477–48110.1038/nature0576717476214Search in Google Scholar

50. Zimmet P, Alberti KGMM, Stern N, et al. The Circadian Syndrome: is the Metabolic Syndrome and much more! J Intern Med 2019;286(2):181-191Search in Google Scholar

51. Ramanathan C, Kathale ND, Liu D, et al. mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet 2018;14(5):e1007369.10.1371/journal.pgen.1007369596590329750810Search in Google Scholar

52. Tamaru T, Takamatsu K. Circadian modification network of a core clock driver BMAL1 to harmonize physiology from brain to peripheral tissues. Neurochem Int. 2018;119:11-1610.1016/j.neuint.2017.12.01329305918Search in Google Scholar

53. Albrecht U. The circadian clock, metabolism and obesity. Obesity Reviews 2017;18(S1):25–3310.1111/obr.1250228164453Search in Google Scholar

54. Kim P, Oster H, Lehnert H, et al. Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 2019;40(1):66-9510.1210/er.2018-0004930169559Search in Google Scholar

eISSN:
2247-6113
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other