1. bookVolumen 28 (2018): Edición 4 (December 2018)
Detalles de la revista
License
Formato
Revista
eISSN
2083-8492
Primera edición
05 Apr 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

The Feature Selection Problem in Computer–Assisted Cytology

Publicado en línea: 11 Jan 2019
Volumen & Edición: Volumen 28 (2018) - Edición 4 (December 2018)
Páginas: 759 - 770
Recibido: 23 Oct 2018
Aceptado: 10 Dec 2018
Detalles de la revista
License
Formato
Revista
eISSN
2083-8492
Primera edición
05 Apr 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Modern cancer diagnostics is based heavily on cytological examinations. Unfortunately, visual inspection of cytological preparations under the microscope is a tedious and time-consuming process. Moreover, intra- and inter-observer variations in cytological diagnosis are substantial. Cytological diagnostics can be facilitated and objectified by using automatic image analysis and machine learning methods. Computerized systems usually preprocess cytological images, segment and detect nuclei, extract and select features, and finally classify the sample. In spite of the fact that a lot of different computerized methods and systems have already been proposed for cytology, they are still not routinely used because there is a need for improvement in their accuracy. This contribution focuses on computerized breast cancer classification. The task at hand is to classify cellular samples coming from fine-needle biopsy as either benign or malignant. For this purpose, we compare 5 methods of nuclei segmentation and detection, 4 methods of feature selection and 4 methods of classification. Nuclei detection and segmentation methods are compared with respect to recall and the F1 score based on the Jaccard index. Feature selection and classification methods are compared with respect to classification accuracy. Nevertheless, the main contribution of our study is to determine which features of nuclei indicate reliably the type of cancer. We also check whether the quality of nuclei segmentation/detection significantly affects the accuracy of cancer classification. It is verified using the test set that the average accuracy of cancer classification is around 76%. Spearman’s correlation and chi-square test allow us to determine significantly better features than the feature forward selection method.

Keywords

Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A. and Campilho, A. (2017). Classification of breast cancer histology images using convolutional neural networks, PLOS ONE 12(6): 1-14.10.1371/journal.pone.0177544545342628570557Search in Google Scholar

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA.Search in Google Scholar

Cheng, J. and Rajapakse, J.C. (2009). Segmentation of clustered nuclei with shape markers and marking function, IEEE Transactions on Biomedical Engineering 56(3): 741-748.10.1109/TBME.2008.200863519272880Search in Google Scholar

Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine Learning 20(3): 273-297.10.1007/BF00994018Search in Google Scholar

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification, IEEE Transactions on Information Theory 13(1): 21-27.10.1109/TIT.1967.1053964Search in Google Scholar

Filipczuk, P., Fevens, T., Krzyżak, A. and Monczak, R. (2013). Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies, IEEE Transactions on Medical Imaging 32(12): 2169-2178.10.1109/TMI.2013.227515123912498Search in Google Scholar

Haralick, R., Shanmugam, K. and Dinstein, I. (1973). Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics 3(6): 610-621.10.1109/TSMC.1973.4309314Search in Google Scholar

ImageJ (2015). Nuclei watershed separation, https://imagej.net/Nuclei_Watershed_Separation.Search in Google Scholar

Irshad, H., Veillard, A., Roux, L. and Racoceanu, D. (2014). Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential, IEEE Reviews in Biomedical Engineering 7: 97-114.10.1109/RBME.2013.229580424802905Search in Google Scholar

Jeleń, L., Fevens, T. and Krzyżak, A. (2008). Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies, International Journal of Applied Mathematics and Computer Science 18(1): 75-83, DOI: 10.2478/v10006-008-0007-x.10.2478/v10006-008-0007-xAbierto DOISearch in Google Scholar

Jung, C. and Kim, C. (2010). Segmenting clustered nuclei using H-minima transform-based marker extraction and contour parameterization, IEEE Transactions on Biomedical Engineering 57(10): 2600-2604.10.1109/TBME.2010.206033620656653Search in Google Scholar

Khoshdeli, M., Cong, R. and Parvin, B. (2017). Detection of nuclei in H&E stained sections using convolutional neural networks, 2017 IEEE EMBS International Conference on Biomedical Health Informatics, Orlando, FL, USA, pp. 105-108.Search in Google Scholar

Kłeczek, P., Dyduch, G., Jaworek-Korjakowska, J. and Tadeusiewicz, R. (2017). Automated epidermis segmentation in histopathological images of human skin stained with hematoxylin and eosin, Proceedings of SPIE: Medical Imaging 10140: 10140-10140-19.10.1117/12.2249018Search in Google Scholar

Kowal, M. and Filipczuk, P. (2014). Nuclei segmentation for computer-aided diagnosis of breast cancer, International Journal of Applied Mathematics and Computer Science 24(1): 19-31, DOI: 10.2478/amcs-2014-0002.10.2478/amcs-2014-0002Abierto DOISearch in Google Scholar

Koyuncu, C.F., Akhan, E., Ersahin, T., Cetin-Atalay, R. and Gunduz-Demir, C. (2016). Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation, Cytometry A 89(4): 338-349.10.1002/cyto.a.2282426945784Search in Google Scholar

Nurzynska, K. (2018). Optimal parameter search for colour normalization aiding cell nuclei segmentation, in S. Kozielski et al. (Eds.), Beyond Databases, Architectures and Structures. Facing the Challenges of Data Proliferation and Growing Variety, Springer International Publishing, Cham, pp. 349-360.10.1007/978-3-319-99987-6_27Search in Google Scholar

Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66.10.1109/TSMC.1979.4310076Search in Google Scholar

Paramanandam, M., O’Byrne, M., Ghosh, B., Mammen, J.J., Manipadam, M.T., Thamburaj, R. and Pakrashi, V. (2016). Automated segmentation of nuclei in breast cancer histopathology images, PLOS ONE 11(9): 1-15.10.1371/journal.pone.0162053502986627649496Search in Google Scholar

Piórkowski, A. (2016). A statistical dominance algorithm for edge detection and segmentation of medical images, in E. Pietka et al. (Eds.), Information Technologies in Medicine, Advances in Intelligent Systems and Computing, Vol. 471, Springer, Cham, pp. 3-14.10.1007/978-3-319-39796-2_1Search in Google Scholar

Roffo, G. (2016). Feature selection library (Matlab toolbox), arXiv: 1607.01327.Search in Google Scholar

Ronneberger, O., Fischer, P. and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, CoRR: abs/1505.04597.Search in Google Scholar

Ruifrok, A.C. and Johnston, D.A. (2001). Quantification of histochemical staining by color deconvolution, Analytical and Quantitative Cytology and Histology 23(4): 291-299.Search in Google Scholar

Sadanandan, S.K., Ranefall, P., Guyader, S.L. and Wählby, C. (2017). Automated training of deep convolutional neural networks for cell segmentation, Scientific Report 7: 7860, DOI: 10.1038/s41598-017-07599-6.10.1038/s41598-017-07599-6555280028798336Abierto DOISearch in Google Scholar

Spearman, C. (1904). The proof and measurement of association between two things, The American Journal of Psychology 15(1): 72-101.10.2307/1412159Search in Google Scholar

Szemenyei, M. and Vajda, F. (2017). Dimension reduction for objects composed of vector sets, International Journal of Applied Mathematics and Computer Science 27(1): 169-180, DOI: 10.1515/amcs-2017-0012.10.1515/amcs-2017-0012Abierto DOISearch in Google Scholar

Tang, X. (1998). Texture information in run-length matrices, IEEE Transactions on Image Processing 7(11): 1602-1609.10.1109/83.72536718276225Search in Google Scholar

Vincent, L. (1993). Morphological grayscale reconstruction in image analysis: Applications and Efficient Algorithms, IEEE Transactions on Image Processing 2(2): 176-201.10.1109/83.21722218296207Search in Google Scholar

Więcławek, W. and Piętka, E. (2015). Watershed based intelligent scissors, Computerized Medical Imaging and Graphics 43: 122 - 129.10.1016/j.compmedimag.2015.01.00325698546Search in Google Scholar

Yang, X., Li, H. and Zhou, X. (2006). Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy, IEEE Transactions on Circuits and Systems I: Regular Papers 53(11): 2405-2414.10.1109/TCSI.2006.884469Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo