Acceso abierto

A biochemical multi-species quality model of a drinking water distribution system for simulation and design


Cite

Antonious, P. (1989). Determination of Biokinetic Coefficientsfor Nitrification in the Activated Sludge Process, Master’s thesis, University of Florida, Gainesville, FL.Search in Google Scholar

Arminski, K. and Zubowicz, T. (2011). Multispecies quality model for drinking water distribution system. InSIK technical report v.2.0., Technical report, Gda´nsk University of Technology, Gda´nsk.Search in Google Scholar

Bitton, G. (1998). Formula Handbook for Environmental Engineersand Scientists, John Wiley and Sons, New York, NY.Search in Google Scholar

Bousher, A., Brimblecombe, P. and Midgley, D. (1986). Rate of hypobromite formation in chlorinated seawater, WaterResearch 20(7): 865-870.10.1016/0043-1354(86)90174-0Search in Google Scholar

Brdys, M. (2010). Intelligent monitoring and control for critical infrastructure systems and application to integrated wastewater treatment systems, 12th IFAC Symposiumon Large Scale Systems: Theory and Applications,Lille, France, Vol. 9, pp. 2-12, DOI: 10.3182/20100712-3-FR-2020.00003.10.3182/20100712-3-FR-2020.00003Search in Google Scholar

Brdys, M. and Ulanicki, B. (1994). Operational Control ofWater Systems: Structures, Algorithms and Applications, Prentice Hall Int, Upper Saddle River, NJ.Search in Google Scholar

Bull, R.J., Reckhowb, D.A., Li, X., Humpaged, A.R., Joll, C. and Hrudeyc, S.E. (2011). Potential carcinogenic hazards of non-regulated disinfection by-products: Haloquinones, halo-cyclopentene and cyclohexene derivatives, n-halamines, halonitriles, and heterocyclic amines, Toxicology 286(1): 1-19, DOI:10.1016/j.tox.2011.05.004.10.1016/j.tox.2011.05.004Search in Google Scholar

Chowdhury, S., Champagne, P. and McLellan, P.J. (2009). Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review, Science of the Total Environment 407(14): 4189-4206, DOI:10.1016/j.scitotenv.2009.04.006.10.1016/j.scitotenv.2009.04.006Search in Google Scholar

Clark, R. M., and Sivaganesan, M. (2002). Predicting chlorine residuals in drinking water: Second order model, Journal of Water Resources Planning and Management128(2): 152-151.10.1061/(ASCE)0733-9496(2002)128:2(152)Search in Google Scholar

Davis, M. and Robert, J.D. (2003). Fundamentals of ChemicalReaction Engineering, McGraw-Hill, New York, NY.Search in Google Scholar

Deborae, M. and von Guten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment kintetics and mechanisms: A critical review, Water Research 42(1-2): 13-51, DOI:10.1016/j.watres.2007.07.025.10.1016/j.watres.2007.07.025Search in Google Scholar

Digiano, F. and Zhang, W. (2008). Uncertainty analysis in a mechanistic model of bacterial regrowth in distribution system, Environmental Science & Technology38(22): 5925-5931, DOI:10.1021/es049745l.10.1021/es049745lSearch in Google Scholar

Duirk, S., Gombert, B., Choi, J. and L., V.R. (2002). Monochloramine loss in the presence of humic acid, Journalof Environmental Monitoring 4(1): 85-89, DOI: 10.1039/b106047n.10.1039/b106047nSearch in Google Scholar

EU Cost Action IC0806-IntelliCIS (2008). Memorandum of Understanding, 7th Framework Program, http://www.intellicis.eu.Search in Google Scholar

EU Council Directive (1998). Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption, http://eur-lex.europa.eu.Search in Google Scholar

Frateur, I., Deslouis, C., Kiene, L., Levi, Y. and Tribollet, B. (1999). Free chlorine consumption induced by cast iron corrosion in drinking water distribution systems, Water Research33(8): 1781-1790.10.1016/S0043-1354(98)00369-8Search in Google Scholar

Gazda, M. and Margerum, D.W. (1994). Reactions of monochloramine with br2, br-3, hobr, and obr-: Formation of bromochloramines, Inorganic Chemistry25(19): 118-123.10.1002/chin.199419013Search in Google Scholar

Gray, J.E.T., Margerum, D.W. and Huffman, R.P. (1978). Chloramine equilibria and the kinetics of disproportionation in aqueous solution, in F.E. Brinckman and J.M. Bellama (Eds.), Organometals and Organometalloids:Occurrence and Fate in the Environment, ACS Books, Washington, DC, pp. 264-277.Search in Google Scholar

Hammes, F., Vital, M., Egli, T., Rubulis, J. and Juhna, T. (2007). Modeling planktonic and biofilm growth of a monoculture (p. fluorescens) in drinking water, TECHNEAU Project Deliverable 5.5.9, http://www.techneau.org/fileadmin/files/Publications/Publications/Deliverables/D5.5.9.pdf Search in Google Scholar

Hand, V.C. and Margerum, D.W. (1983). Kinetics and mechanisms of the decomposition of dichloramine in aqueous solution, Inorganic Chemistry22(10): 1449-1456, DOI: 10.1021/ic00152a007.10.1021/ic00152a007Search in Google Scholar

Helbling, D. and VanBriesen, J. (2009). Modeling residual chlorine response to a microbial contamination event in drinking water distribution systems, Journalof Environmental Engineering 135(10): 918-927, DOI:10.1061/(ASCE)EE.1943-7870.0000080.10.1061/(ASCE)EE.1943-7870.0000080Search in Google Scholar

Hong, Y., Liu, S. and Karanfil, T. (2008). Understanding DBP formation during chloramination, Florida Water ResourceJournal 60(4): 51-53.Search in Google Scholar

Hrudey, S.E. (2009). Chlorination disinfection by-products, public health risk tradeoffs and me, Water Research43(8): 2057-2092, DOI:10.1016/j.watres.2009.02.011.10.1016/j.watres.2009.02.011Search in Google Scholar

Jafvert, C.T. and Valentine, R.L. (1987). Dichloramine decomposition in the presence of excess ammonia, WaterResearch 21(8): 967-973.10.1016/S0043-1354(87)80015-5Search in Google Scholar

Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles, M. (2003). Water quality modelling for drinking water distribution systems, International Congress on Modellingand Simulation, Townsville, Australia, pp. 332-337.Search in Google Scholar

Jegatheesan, V., Kastl, G., Fisher, I., Chandy, J. and Angles, M. (2004). Modeling bacterial growth in drinking water: Effect of nutrients, Journal of AWWA (American WaterWorks Association) 96(5): 129-141.10.1002/j.1551-8833.2004.tb10634.xSearch in Google Scholar

Johnson, D.W. and Margerum, D.W. (1991). Non-metal redox kinetics: A reexamination of the mechanism of the reaction between hypochlorite and nitrite ions, Inorganic Chemistry30(25): 4845-4851.10.1021/ic00025a031Search in Google Scholar

Kohpaei, A. and Sathasivan, A. (2011). Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development, Chemical Engineering Journal 171(1): 232-241, DOI:10.1016/j.cej.2011.03.034.10.1016/j.cej.2011.03.034Search in Google Scholar

Leao, S.F. (1981). Kinetics of Combined Chlorine: Reactionof Substitution and Redox, Ph.D. thesis, University of California, Berkeley, CA.Search in Google Scholar

LeChevallier, M., Welch, N. and Smith, D.B. (1996). Full-scale studies of factors related to coliform regrowth in drinking water, Applied and Environmental Microbiology62(7): 2201-2211.10.1128/aem.62.7.2201-2211.19961680008779557Search in Google Scholar

Liu:2005a Liu, S., Taylor, J., Randall, A.A. and Dietz, J. (2005a). Nitrification modeling in chloraminated distribution systems, American Water Works Association97(10): 98-108.10.1002/j.1551-8833.2005.tb07499.xSearch in Google Scholar

Liu, S., Taylor, J.S. and Webb, D. (2005b). Water quality profiles during nitrification in a pilot distribution system study, Water Supply: Research and Technology-Aqua54(3): 133-145.10.2166/aqua.2005.0013Search in Google Scholar

Liu, W. and Qi, S. (2010). Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination, Frontiers of EnvironmentalScience & Engineering in China 4(1): 65-72, DOI:10.1007/s11783-010-0010-y.10.1007/s11783-010-0010-ySearch in Google Scholar

Lu C., Biswas P., Clark, R.M. (1995). Simultaneous transport of substrates, disinfectants and microorganisms in water pipes, Water Research 29(3): 881-894.10.1016/0043-1354(94)00202-ISearch in Google Scholar

Łangowski, R. and Brdys, M.A. (2007). Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator, International Journal of AppliedMathematics and Computer Science 17(2): 199-216. DOI: 10.2478/v10006-007-0019-y.10.2478/v10006-007-0019-ySearch in Google Scholar

Margerum, D.W., Gray, E.T. and Huffman, R.P. (1978). Chlorination and the formation of N-chloro compounds in water treatment, in F.E. Brinckman and J.M. Bellama (Eds.), Organometals and Organometalloids: Occurrenceand Fate in the Environment, ACS Books, Washington, DC, pp. 278-291. Search in Google Scholar

Margerum, D.W., Schurter, L.M., Hobson, J. and Moore, E.E. (1994). Water chlorination chemistry: Nonmetal redox kinetics of chloramine and nitrite ion, Environmental Science& Technology 28(2): 331-337.10.1021/es00051a021Search in Google Scholar

McKinney, R.E. (2004). Environmental Pollution Control Microbiology, Marcel Beckher, New York, NY.10.1201/9780203025697Search in Google Scholar

Metcalf, E. and Tchobanoglous, G. (1978). Wastewater EngineeringTreatment Disposal Reuse, McGraw-Hill, Upper Saddle River, NJ.Search in Google Scholar

Morris, J.C. and Isaac, R.A. (1981). A critical review of kinetic and thermodynamic constants for the aqueous chlorine-ammonia system, in R.L. Jolley, W.A. Brungs, J.A. Cotruvo, R.B. Cumming, J.S. Mattice, and V.A. Jacobs (Eds.), Water Chlorination: Environmental Impactand Health Effects, Ann Arbor Science, Ann Arbor, MI, pp. 49-62.Search in Google Scholar

Muellner, M.G., Wagner, E.D., McCalla, K., Richardson, S.D., Woo, Y.T. and Plewa, M.J. (2007). Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?, Environmental Science and Technology41(2): 645-651.Search in Google Scholar

Myszor, D. and Cyran, K. (2013). Mathematical modeling of molecule evolution in protocells, International Journalof Applied Mathematics of Computer Science23(1): 213-229, DOI: 10.2478/amcs-2013-0017.10.2478/amcs-2013-0017Search in Google Scholar

Nokes, C., Fenton, E. and Randal, C. (1999). Modelling the formation of brominated trihalomatanes in chlorinated drinking waters, Water Research 33(17): 3557-3568.10.1016/S0043-1354(99)00081-0Search in Google Scholar

Nowicki, A., Grochowski, M. and Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study, InternationalJournal of Applied Mathematics of Computer Science22(4): 939-949, DOI: 10.2478/v10006-012-0070-1.10.2478/v10006-012-0070-1Search in Google Scholar

Poduska, R.A. and Andrews, F.J. (1974). Dynamics of nitrification in the activated sludge process, 29th IndustrialWaste Conference, Lafayette, IN, USA, pp. 2599-2619.Search in Google Scholar

Pope, P.G. (2006). Haloacetic Acid Formation During Chloramination:Role of Environmental Conditions, Kinetics, andHaloamine Chemistry, Ph.D. thesis, University of Texas at Austin, TX.Search in Google Scholar

Rossman, L.A. (2000). Epanet 2 users manual, Risk Reduction Engineering Laboratory, US EPA, Cincinnati, OH.Search in Google Scholar

Rossman, L.A., Clark, R.M. and Grayman, W.M. (1994). Modeling chlorine residuals in drinking-water distribution-systems, Journal of Environmental Engineering120(4): 803-820.10.1061/(ASCE)0733-9372(1994)120:4(803)Search in Google Scholar

Sadiq, R. and Rodriguez, R.J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review, Science of the Total Environment321(1-3): 21-46.10.1016/j.scitotenv.2003.05.00115050383Search in Google Scholar

Shang, F. and Rossman, L. (2011). Epanet multi-specie extention user‘s manual, EPA/600/S-07/021, National Risk Management Research Laboratory, National Homeland Security Research Center Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH.Search in Google Scholar

Shang, F., Uber, J. and Rossman, L. (2008). Modeling reaction and transport of multiple species in water distribution systems, Environmental Science & Technology42(3): 808-814, DOI: 10.1021/es072011z.10.1021/es072011zSearch in Google Scholar

Snoeyink, V.L. and Jenkins, D. (1980). Water Chemistry, John Wiley and Sons, New York, NY.Search in Google Scholar

Trofe, T.W., Inman, J.G.W. and Johnson, J.D. (1980). Kinetics of monochloramine decomposition in the presence of bromide, Environmental Science & Technology14(5): 544-549, DOI: 10.1021/es60165a008. 10.1021/es60165a008Search in Google Scholar

van der Kooij, D., Vrouwenvelder, H. and Veenendaal, H. (1995). Kintetic aspects of biofilm formation on surfaces exposed to drinking water, Water Science and Technology32(8): 61-65, DOI:10.1016/0273-1223(96)00008-X.10.1016/0273-1223(96)00008-XSearch in Google Scholar

Vikesland, P.J., Ozekin, K. and Valentine, R. (2001). Monochloramine decay in model and distribution system waters, Water Research 35(7): 1766-1776.10.1016/S0043-1354(00)00406-1Search in Google Scholar

Williamson, K. and McCarty, P. (1976). Verification studies of the biofilm model for bacterial substrate utilization, Journal of Water Pollution Control Federation48(2): 1281-289.Search in Google Scholar

World Health Organisation (2005). Guidelines for drinking water quality. Dichloroacetic acid in drinking-water, ReportNo. WHO/SDE/WSH/05.08/121.Search in Google Scholar

Zhang,W.,Miller, C. and DiGiano, F. (2004). Bacterial regrowth model for water distribution systems incorporating alternating split-operator solution technique, Journal ofEnvironmental Engineering 130(3): 932-941, DOI: 10.1060/(ASCE)0733-39372(2004)130:9(932). Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Mathematics, Applied Mathematics