Acceso abierto

Changes in Bone Metabolism and Structure in Primary Hyperparathyroidism


Cite

1. Egbuna OI, Brown EM. Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol. 2008, 22, 129-148. Search in Google Scholar

2. Springhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Williams Textbook of Endocrinology. Vol. 1. Kronenberg HM.Melmed S,Polonsky, KS., Larsen PR (editors), Saunders Elsevier, 2008, 1203-1268. Search in Google Scholar

3. Silva BC, Costa AG, Cusano NE, et al. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest, 2011, 34, 801-810. Search in Google Scholar

4. Balani DH, Ono N, Kronenberg HM. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J Clin Invest, 2017, 127, 3327-38.10.1172/JCI91699566955528758904 Search in Google Scholar

5. Fan Y, Hanai JI, Le PT, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab, 2017; 25, 661-72.10.1016/j.cmet.2017.01.001534292528162969 Search in Google Scholar

6. Ishizuya T, Yokose S, Hori M, et al. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest, 1997, 99 (12), 2961-70.10.1172/JCI1194915081489185520 Search in Google Scholar

7. Bellido T, Ali AA, Plotkin LI, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem, 2003, 278(50), 50259-72.10.1074/jbc.M30744420014523023 Search in Google Scholar

8. Schnoke M, Midura SB, Midura RJ. Parathyroid hormone suppresses osteoblast apoptosis by augmenting DNA repair. Bone, 2009, 45(3), 590-602.10.1016/j.bone.2009.05.006275283619450716 Search in Google Scholar

9. Aslan D, Andersen MD, Gede LB, et al. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans. Scand J Clin Lab Invest, 2012, 72(1), 14-22.10.3109/00365513.2011.62463122085136 Search in Google Scholar

10. Bodine PV, Komm BS. Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord, 2006, 7(1-2), 33-39.10.1007/s11154-006-9002-416960757 Search in Google Scholar

11. Almeida M, Han L, Bellido T, et al. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and-independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem, 2005, 280(50), 41342-51.10.1074/jbc.M50216820016251184 Search in Google Scholar

12. Bodine PV, Billiard J, Moran RA, at al. The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem, 2005, 96(6), 1212-30.10.1002/jcb.2059916149051 Search in Google Scholar

13. Glass DA 2nd, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Developmental cell 2005, 8, 751-764.10.1016/j.devcel.2005.02.01715866165 Search in Google Scholar

14. Kulkarni NH, Halladay DL, Miles RR, et al. Effects of parathyroid hormone on Wnt signaling pathway in bone. J Cell Biochem, 2005, 95(6), 1178-90.10.1002/jcb.20506 Search in Google Scholar

15. Bellido T, Ali AA, Gubrij I, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology, 2005, 146(11), 4577-8310.1210/en.2005-0239 Search in Google Scholar

16. Qin L, Qiu P, Wang L, et al. Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem, 2003, 278, 19723-31.10.1074/jbc.M212226200 Search in Google Scholar

17. Kim JH, Kim N. Signaling Pathways in Osteoclast Differentiation. Chonnam Med J, 2016, 52(1), 12-17.10.4068/cmj.2016.52.1.12 Search in Google Scholar

18. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89, 309-319.10.1016/S0092-8674(00)80209-3 Search in Google Scholar

19. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology, 2001, 142, 5050-55.10.1210/endo.142.12.853611713196 Search in Google Scholar

20. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev, 2008, 29, 155-192.10.1210/er.2007-0014252884618057140 Search in Google Scholar

21. Ma YL, Cain RL, Halladay DL, et al. Catabolic effects of continuous human PTH (1-38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology, 2001, 142, 4047-54.10.1210/endo.142.9.835611517184 Search in Google Scholar

22. Huang JC, Sakata T, Pfleger LL, et al. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res, 2004,19, 235-244.10.1359/JBMR.030122614969393 Search in Google Scholar

23. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone, 2005, 37, 148-58.10.1016/j.bone.2005.03.01815946907 Search in Google Scholar

24. Bonewald LF. The amazing osteocyte. J Bone Miner Res, 2011, 26, 229-38.10.1002/jbmr.320317934521254230 Search in Google Scholar

25. O’Brien CA, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis. Bone, 2013, 54, 258-63.10.1016/j.bone.2012.08.121353891522939943 Search in Google Scholar

26. van Bezooijen RL, ten Dijke P, Papapoulos SE, et al. SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev, 2005, 16, 319-27.10.1016/j.cytogfr.2005.02.00515869900 Search in Google Scholar

27. Ben-awadh AN, Delgado-Calle J, Tu X, et al. Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes. Endocrinology, 2014, 155, 2797-809.10.1210/en.2014-1046409800324877630 Search in Google Scholar

28. Hory BG, Roussanne MC, Rostand S, et al. Absence of response to human parathyroid hormone in athymic mice grafted with human parathyroid adenoma, hyperplasia or parathyroid cells maintained in culture. J Endocrinol Invest, 2000, 23(5), 273-9.10.1007/BF0334372310882144 Search in Google Scholar

29. Gao Y, Wu X, Terauchi M, et al. T cells potentiate PTH-induced cortical bone loss through CD40L signaling. Cell Metab, 2008, 8(2), 132-45.10.1016/j.cmet.2008.07.001256984318680714 Search in Google Scholar

30. Pacifici R. T cells: critical bone regulators in health and disease. Bone, 2010, 47, 461-471.10.1016/j.bone.2010.04.611292625820452473 Search in Google Scholar

31. Terauchi M, Li JY, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab, 2009, 10(3), 229-240.10.1016/j.cmet.2009.07.010275185519723499 Search in Google Scholar

32. D’Amelio P, Sassi F, Buondonno I, et al. Treatment with intermittent PTH increases Wnt10b production by T cells in osteoporotic patients. Osteoporos Int., 2015, 26(12), 2785-91.10.1007/s00198-015-3189-826068297 Search in Google Scholar

33. Tawfeek H, Bedi B, Li JY, et al. Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS One, 2010, 5(8), e12290.10.1371/journal.pone.0012290292490020808842 Search in Google Scholar

34. Li JY, D’Amelio P, Robinson J, et al. IL-17A Is Increased in Humans with Primary Hyperparathyroidism and Mediates PTH-Induced Bone Loss in Mice. Cell Metab, 2015, 22(5), 799-810.10.1016/j.cmet.2015.09.012463503426456334 Search in Google Scholar

35. Tawfeek H, Bedi B, Li JY, et al. Disruption of PTH Receptor 1 in T cells protects against PTH-induced bone loss. PLoS One, 2010, 5, e12290.10.1371/journal.pone.0012290292490020808842 Search in Google Scholar

36. Wermers RA, Khosla S, Atkinson EJ, et al. Incidence of primary hyperparathyroidism in Rochester, Minnesota, 1993-2001: an update on the changing epidemiology of the disease. J. Bone Miner Res, 2006, 21, 171-7.10.1359/JBMR.05091016355286 Search in Google Scholar

37. Lee JH, Chung SM, Kim HS. Osteitis fibrosa cystica mistaken for malignant disease. Clin Exp Otorhinolaryngol, 2013, 6, 110-3.10.3342/ceo.2013.6.2.110368706023799171 Search in Google Scholar

38. Bandeira F, Cusano NE, Silva BC, et al. Bone disease in primary hyperparathyroidism. Arq Bras Endocrinol Metabol, 2014, 58, 553-61.10.1590/0004-2730000003381431535725166047 Search in Google Scholar

39. Marcocci C, Cianferotti L, Cetani F. Bone disease in primary hyperparathyrodism. Ther Adv Musculoskelet Dis, 2012, 4, 357-68.10.1177/1759720X12441869345861523024712 Search in Google Scholar

40. Chew FS, Huang-Hellinger F. Brown tumor. Am. J. Roentgen-ol, 1993, 160, 752-752.10.2214/ajr.160.4.84566578456657 Search in Google Scholar

41. Van der Woude HJ, Smithuis R. Bone tumor – systematic approach and differential diagnosis. Radiologyassistant (2010). Search in Google Scholar

42. Selvi F, Cakarer S, Tanakol R, et al. Brown tumor of the maxilla and mandible: a rare complication of tertiary hyperparathyroidism. Dentomaxillofacial Radiol, 2009, 38, 53-58.10.1259/dmfr/8169458319114425 Search in Google Scholar

43. Silverberg SJ, Shane E, de la Cruz L, et al. Skeletal disease in primary hyperparathyroidism. J Bone Miner Res, 1989, 4, 283-91.10.1002/jbmr.56500403022763869 Search in Google Scholar

44. Parisien M, Cosman F, Mellish RW, et al. Bone structure in postmenopausal hyperparathyroid, osteoporotic, and normal women. J Bone Miner Res, 1995, 10, 1393-9.10.1002/jbmr.56501009177502712 Search in Google Scholar

45. Lewiecki EM, Miller PD. Skeletal effects of primary hyper-parathyroidism: bone mineral density and fracture risk. J Clin Densitom, 2013, 16, 28-32.10.1016/j.jocd.2012.11.013 Search in Google Scholar

46. Rubin MR, Bilezikian JP, McMahon DJ, et al. The natural history of primary hyperparathyroidism with or without parathyroid surgery after 15 years. J Clin Endocrinol Metab, 2008, 93, 3462-70.10.1210/jc.2007-1215 Search in Google Scholar

47. Bilezikian JP, Brandi ML, Eastell R, et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop. J Clin Endocrinol Metab, 2014, 99, 3561-9.10.1210/jc.2014-1413 Search in Google Scholar

48. Silva BC, Boutroy S, Zhang C, et al. Trabecular bone score (TBS) - a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab, 2013, 98, 1963-70.10.1210/jc.2012-4255 Search in Google Scholar

49. Stein EM, Silva BC, Boutroy S, et al. Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res, 2013, 28, 1029-40.10.1002/jbmr.1841 Search in Google Scholar

50. Makras P, Anastasilakis AD. Bone disease in primary hyper-parathyroidism. Metabolism, 2018, 80, 57-65.10.1016/j.metabol.2017.10.003 Search in Google Scholar

51. Valdemarsson S, Lindergård B, Tibblin S, et al. Increased biochemical markers of bone formation and resorption in primary hyperparathyroidism with special reference to patients with mild disease. J Intern Med, 1998, 243(2), 115-122.10.1046/j.1365-2796.1998.00241.x Search in Google Scholar

52. Christiansen P, Steiniche T, Brixen K, et al. Primary hyper-parathyroidism: short-term changes in bone remodeling and bone mineral density following parathyroidectomy. Bone, 1999, 25(2), 237-244.10.1016/S8756-3282(99)00150-7 Search in Google Scholar

53. Heaney RP. The basis for the post-parathyroidectomy increase in bone mass. J Bone Miner Res, 2002, 17(2), 154-7. Search in Google Scholar

54. Silverberg SJ, Shane E, Jacobs TP, et al. A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med, 1999, 341(17), 1249-55.10.1056/NEJM19991021341170110528034 Search in Google Scholar

55. Silverberg SJ, Locker FG, Bilezikian JP. Vertebral osteopenia: a new indication for surgery in primary hyperparathyroidism. J Clin Endocrinol Metab, 1996 Nov, 81(11), 4007-12.10.1210/jcem.81.11.89238528923852 Search in Google Scholar

56. Thorsen K, Kristoffersson AO, Lorentzon RP. Changes in bone mass and serum markers of bone metabolism after parathyroidectomy. Surgery, 1997,122(5), 882-887.10.1016/S0039-6060(97)90328-7 Search in Google Scholar

57. Steiniche T, Christiansen P, Vesterby A, et al. Primary hyper-parathyroidism: bone structure, balance, and remodeling before and 3 years after surgical treatment. Bone, 2000, 26(5), 535-543.10.1016/S8756-3282(00)00260-X Search in Google Scholar

58. Garton M, Martin J, Stewart A, et al. Changes in bone mass and metabolism after surgery for primary hyperparathyroidism. Clin Endocrinol (Oxf), 1995, 42(5), 493-500.10.1111/j.1365-2265.1995.tb02668.x7621568 Search in Google Scholar

59. Alonso S, Ferrero E, Donat M, et al. The usefulness of high preoperative levels of serum type I collagen bone markers for the prediction of changes in bone mineral density after parathyroidectomy. J Endocrinol Invest, 2012, 35, 640-644. Search in Google Scholar

60. Tamura Y, Araki A, Chiba Y, et al. Remarkable increase in lumbar spine bone mineral density and amelioration in biochemical markers of bone turnover after parathyroidectomy in elderly patients with primary hyperparathyroidism: a 5-year follow-up study. J Bone Miner Metab, 2007, 25(4), 226-231.10.1007/s00774-007-0754-z17593492 Search in Google Scholar

61. Vestergaard P. Current pharmacological options for the management of primary hyperparathyroidism. Drugs, 2006, 66, 2189-2207.10.2165/00003495-200666170-0000417137403 Search in Google Scholar

62. Rossini M, Gatti D, Isaiah G, et al. Effects of oral alendronate in elderly patients with osteoporosis and mild primary hyper-parathyroidism. J Bone Min Res, 2001, 16, 113-119.10.1359/jbmr.2001.16.1.11311149474 Search in Google Scholar

eISSN:
2719-5384
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other