This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fromhold-Eisebith M, Marschall P, Peters R, Thomes P. Torn between digitized future and context dependent past – How implementing ‘Industry 4.0’ production technologies could transform the German textile industry. Technological Forecasting and Social Change. 2021;166:120620. https://doi.org/10.1016/j.techfore.2021.120620Fromhold-EisebithMMarschallPPetersRThomesP.Torn between digitized future and context dependent past – How implementing ‘Industry 4.0’ production technologies could transform the German textile industry. Technological Forecasting and Social Change. 2021;166:120620. https://doi.org/10.1016/j.techfore.2021.120620Search in Google Scholar
Müller JM, Buliga O, Voigt K-I. Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technological Forecasting and Social Change. 2018;132:2–17. https://doi.org/10.1016/j.techfore.2017.12.019MüllerJMBuligaOVoigtK-I.Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technological Forecasting and Social Change. 2018;132:2–17. https://doi.org/10.1016/j.techfore.2017.12.019Search in Google Scholar
Engemann H, Du S, Kallweit S, Cönen P, Dawar H. OMNIVIL—An Autonomous Mobile Manipulator for Flexible Production. Sensors. 2020;20(24):7249. https://doi.org/10.3390/s20247249EngemannHDuSKallweitSCönenPDawarH.OMNIVIL—An Autonomous Mobile Manipulator for Flexible Production. Sensors. 2020;20(24):7249. https://doi.org/10.3390/s20247249Search in Google Scholar
Hanh LD, Tu HB. Computer Vision for Industrial Robot in Planar Bin Picking Application. Advances in Science, Technology and Engineering Systems Journal. 2020;5(6):1244–9. https://doi.org/10.25046/aj0506148HanhLDTuHB.Computer Vision for Industrial Robot in Planar Bin Picking Application. Advances in Science, Technology and Engineering Systems Journal. 2020;5(6):1244–9. https://doi.org/10.25046/aj0506148Search in Google Scholar
Bedaka AK, Mahmoud AM, Lee S-C, Lin C-Y. Autonomous Robot-Guided Inspection System Based on Offline Programming and RGB-D Model. Sensors. 2018;18(11):4008. https://doi.org/10.3390/s18114008BedakaAKMahmoudAMLeeS-CLinC-Y.Autonomous Robot-Guided Inspection System Based on Offline Programming and RGB-D Model. Sensors. 2018;18(11):4008. https://doi.org/10.3390/s18114008Search in Google Scholar
Engemann H, Wiesen P, Kallweit S, Deshpande H, Schleupen J. Autonomous Mobile Manipulation Using ROS. In: Advances in Service and Industrial Robotics. Cham: Springer International Publishing; 2017. p. 389–401. [accessed 4 Apr 2024] https://doi.org/10.1007/978-3-319-61276-8_43EngemannHWiesenPKallweitSDeshpandeHSchleupenJ.Autonomous Mobile Manipulation Using ROS. In: Advances in Service and Industrial Robotics. Cham: Springer International Publishing; 2017. p. 389–401. [accessed 4 Apr 2024] https://doi.org/10.1007/978-3-319-61276-8_43Search in Google Scholar
Bedaka AK, Vidal J, Lin C-Y. Automatic robot path integration using three-dimensional vision and offline programming. The International Journal of Advanced Manufacturing Technology. 2019;102(5–8):1935–50. https://doi.org/10.1007/s00170-018-03282-wBedakaAKVidalJLinC-Y.Automatic robot path integration using three-dimensional vision and offline programming. The International Journal of Advanced Manufacturing Technology. 2019;102(5–8):1935–50. https://doi.org/10.1007/s00170-018-03282-wSearch in Google Scholar
Jermak CzJ, Jakubowicz M, Dereżyński J, Rucki M. Air Gauge Characteristics Linearity Improvement. Journal of Control Science and Engineering. 2016;2016:1–7. https://doi.org/10.1155/2016/8701238JermakCzJJakubowiczMDereżyńskiJRuckiM.Air Gauge Characteristics Linearity Improvement. Journal of Control Science and Engineering. 2016;2016:1–7. https://doi.org/10.1155/2016/8701238Search in Google Scholar
Jakubowicz M, Rucki M, Varga G, Majchrowski R. Influence of the Inlet Nozzle Diameter on the Air Gauge Dynamics. In: Lecture Notes in Mechanical Engineering. Cham: Springer International Publishing. 2017; 733–42. [accessed 2024] https://doi.org/10.1007/978-3-319-68619-6_71JakubowiczMRuckiMVargaGMajchrowskiR.Influence of the Inlet Nozzle Diameter on the Air Gauge Dynamics. In: Lecture Notes in Mechanical Engineering. Cham: Springer International Publishing. 2017; 733–42. [accessed 2024] https://doi.org/10.1007/978-3-319-68619-6_71Search in Google Scholar
Arnarson H, Solvang B. Reconfigurable autonomous industrial mobile manipulator system. In: 2022 IEEE/SICE International Symposium on System Integration (SII). IEEE; 2022. [accessed 4 Apr 2024] https://doi.org/10.1109/sii52469.2022.9708887ArnarsonHSolvangB.Reconfigurable autonomous industrial mobile manipulator system. In: 2022 IEEE/SICE International Symposium on System Integration (SII). IEEE; 2022. [accessed 4 Apr 2024] https://doi.org/10.1109/sii52469.2022.9708887Search in Google Scholar
Teixeira FM, Silva MF. Simulation of a Robotic Co-transport System. In: 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE; 2021. [accessed 4 Apr 2024] https://doi.org/10.1109/icarsc52212.2021.9429776TeixeiraFMSilvaMF.Simulation of a Robotic Co-transport System. In: 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE; 2021. [accessed 4 Apr 2024] https://doi.org/10.1109/icarsc52212.2021.9429776Search in Google Scholar
Häuschen H. Der Bauksten. Industieroboter im praktischen Einsatz. Proc 3rd ISIR. 1973;83–93.HäuschenH.Der Bauksten. Industieroboter im praktischen Einsatz. Proc 3rd ISIR. 1973;83–93.Search in Google Scholar
Warnecke H, Schraft R. Einlegegeräte zur automatischen. Mainz : Krausskopf-verlag; 1973.WarneckeHSchraftR.Einlegegeräte zur automatischen. Mainz : Krausskopf-verlag; 1973.Search in Google Scholar
Feix T, Romero J, Schmiedmayer H-B, Dollar AM, Kragic D. The GRASP Taxonomy of Human Grasp Types. IEEE Transactions on Human-Machine Systems. 2016 Feb;46(1):66–77. https://doi.org/10.1109/thms.2015.2470657FeixTRomeroJSchmiedmayerH-BDollarAMKragicD.The GRASP Taxonomy of Human Grasp Types. IEEE Transactions on Human-Machine Systems. 2016Feb;46(1):66–77. https://doi.org/10.1109/thms.2015.2470657Search in Google Scholar
Hua J, Zeng L, Li G, Ju Z. Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning. Sensors. 2021;21(4):1278. https://doi.org/10.3390/s21041278HuaJZengLLiGJuZ.Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning. Sensors. 2021;21(4):1278. https://doi.org/10.3390/s21041278Search in Google Scholar
Rękas A, Kaczmarek T, Wieczorowski M, Gapiński B, Jakubowicz M, Grochalski K, et al. Analysis of Tool Geometry for the Stamping Process of Large-Size Car Body Components Using a 3D Optical Measurement System. Materials. 2021;14(24):7608. https://doi.org/10.3390/ma14247608RękasAKaczmarekTWieczorowskiMGapińskiBJakubowiczMGrochalskiKAnalysis of Tool Geometry for the Stamping Process of Large-Size Car Body Components Using a 3D Optical Measurement System. Materials. 2021;14(24):7608. https://doi.org/10.3390/ma14247608Search in Google Scholar
Swojak N, Wieczorowski M, Jakubowicz M. Assessment of selected metrological properties of laser triangulation sensors. Measurement. 2021;176:109190. https://doi.org/10.1016/j.measurement.2021.109190SwojakNWieczorowskiMJakubowiczM.Assessment of selected metrological properties of laser triangulation sensors. Measurement. 2021;176:109190. https://doi.org/10.1016/j.measurement.2021.109190Search in Google Scholar
Grochalski K, Wieczorowski M, Jakubek B. Influence of thermal disturbances on profilometric measurements of surface asperities. Measurement. 2022 Feb;190:110694. https://doi.org/10.1016/j.measurement.2021.110694GrochalskiKWieczorowskiMJakubekB.Influence of thermal disturbances on profilometric measurements of surface asperities. Measurement. 2022Feb;190:110694. https://doi.org/10.1016/j.measurement.2021.110694Search in Google Scholar
Jakubek B, Barczewski R, Jakubowicz M. The influence of the lubrication on the vibroacoustic signal generated by rolling bearings. Vibrations in Physical Systems. 2017;28:1–9.JakubekBBarczewskiRJakubowiczM.The influence of the lubrication on the vibroacoustic signal generated by rolling bearings. Vibrations in Physical Systems. 2017;28:1–9.Search in Google Scholar
Andrzejewski J, Marciniak-Podsadna L. Development of Thermal Resistant FDM Printed Blends. The Preparation of GPET/PC Blends and Evaluation of Material Performance. Materials. 2020;13(9):2057. https://doi.org/10.3390/ma13092057AndrzejewskiJMarciniak-PodsadnaL.Development of Thermal Resistant FDM Printed Blends. The Preparation of GPET/PC Blends and Evaluation of Material Performance. Materials. 2020;13(9):2057. https://doi.org/10.3390/ma13092057Search in Google Scholar
Chen X, Huang Z, Sun Y, Zhong Y, Gu R, Bai L. Online on-Road Motion Planning Based on Hybrid Potential Field Model for Car-Like Robot. Journal of Intelligent & Robotic Systems. 2022;105(1). https://doi.org/10.1007/s10846-022-01620-5ChenXHuangZSunYZhongYGuRBaiL.Online on-Road Motion Planning Based on Hybrid Potential Field Model for Car-Like Robot. Journal of Intelligent & Robotic Systems. 2022;105(1). https://doi.org/10.1007/s10846-022-01620-5Search in Google Scholar
Maini P, Gonultas BM, Isler V. Online Coverage Planning for an Autonomous Weed Mowing Robot With Curvature Constraints. IEEE Robotics and Automation Letters. 2022 Apr;7(2):5445–52. https://doi.org/10.1109/lra.2022.3154006MainiPGonultasBMIslerV.Online Coverage Planning for an Autonomous Weed Mowing Robot With Curvature Constraints. IEEE Robotics and Automation Letters. 2022Apr;7(2):5445–52. https://doi.org/10.1109/lra.2022.3154006Search in Google Scholar
Mitsi S, Bouzakis K-D, Mansour G, Sagris D, Maliaris G. Off-line programming of an industrial robot for manufacturing. The International Journal of Advanced Manufacturing Technology. 2004;26(3):262–7. https://doi.org/10.1007/s00170-003-1728-5MitsiSBouzakisK-DMansourGSagrisDMaliarisG.Off-line programming of an industrial robot for manufacturing. The International Journal of Advanced Manufacturing Technology. 2004;26(3):262-7. https://doi.org/10.1007/s00170-003-1728-5Search in Google Scholar
Larkin N, Milojevic A, Pan Z, Polden J, Norrish J. Offline programming for short batch robotic welding. In: 16th joining of materials (JOM) conference. 2011.LarkinNMilojevicAPanZPoldenJNorrishJ.Offline programming for short batch robotic welding. In: 16th joining of materials (JOM) conference. 2011.Search in Google Scholar
Wang C, Zhang Y, Zhang X, Wu Z, Zhu X, Jin S, et al. Offline-Online Learning of Deformation Model for Cable Manipulation With Graph Neural Networks. IEEE Robotics and Automation Letters. 2022;7(2):5544–51. https://doi.org/10.1109/lra.2022.3158376WangCZhangYZhangXWuZZhuXJinSOffline-Online Learning of Deformation Model for Cable Manipulation With Graph Neural Networks. IEEE Robotics and Automation Letters. 2022;7(2):5544–51. https://doi.org/10.1109/lra.2022.3158376Search in Google Scholar
Wang Z, Tian G. Hybrid offline and online task planning for service robot using object-level semantic map and probabilistic inference. Information Sciences. 2022;593:78–98. https://doi.org/10.1016/j.ins.2022.01.058WangZTianG.Hybrid offline and online task planning for service robot using object-level semantic map and probabilistic inference. Information Sciences. 2022;593:78–98. https://doi.org/10.1016/j.ins.2022.01.058Search in Google Scholar
Javaid M, Haleem A, Singh RP, Suman R, Gonzalez ES. Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustainable Operations and Computers. 2022;3:203–17. https://doi.org/10.1016/j.susoc.2022.01.008JavaidMHaleemASinghRPSumanRGonzalezES.Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustainable Operations and Computers. 2022;3:203–17. https://doi.org/10.1016/j.susoc.2022.01.008Search in Google Scholar
Tipary B, Erdős G. Tolerance analysis for robotic pick-and-place operations. The International Journal of Advanced Manufacturing Technology. 2021;117(5–6):1405– 26. https://doi.org/10.1007/s00170-021-07672-5TiparyBErdősG.Tolerance analysis for robotic pick-and-place operations. The International Journal of Advanced Manufacturing Technology. 2021;117(5–6):1405–26. https://doi.org/10.1007/s00170-021-07672-5Search in Google Scholar
Mohsen M, Mohamed AM, Ahmed SM, Ibrahim K. Bilateral Control Of A 2-Dof Teleoperated Manipulator Using Udp Scheme. Ain Shams Engineering Journal. 2023;14(9):102065. https://doi.org/10.1016/j.asej.2022.102065MohsenMMohamedAMAhmedSMIbrahimK.Bilateral Control Of A 2-Dof Teleoperated Manipulator Using Udp Scheme. Ain Shams Engineering Journal. 2023;14(9):102065. https://doi.org/10.1016/j.asej.2022.102065Search in Google Scholar
Sun Y, Wan Y, Ma H, Liang X. Workspace Description and Evaluation of Master-Slave Dual Hydraulic Manipulators. Actuators. 2022;12(1):9. https://doi.org/10.3390/act12010009SunYWanYMaHLiangX.Workspace Description and Evaluation of Master-Slave Dual Hydraulic Manipulators. Actuators. 2022;12(1):9. https://doi.org/10.3390/act12010009Search in Google Scholar
Li Z, Zhang E, Zhai B, Li B. Master-Slave Arm Heterogeneous Mapping With Link Pose Constraint in Teleoperation System. IEEE Access. 2022;10:107202–13. https://doi.org/10.1109/access.2022.3213054LiZZhangEZhaiBLiB.Master-Slave Arm Heterogeneous Mapping With Link Pose Constraint in Teleoperation System. IEEE Access. 2022;10:107202–13. https://doi.org/10.1109/access.2022.3213054Search in Google Scholar
Wang J, Li H, Meng F, Ma R, Lai Q, Li J, et al. Control Strategy of Master-Slave Manipulator Based on Force Feedback for Decommissioning of Nuclear Facilities. Mathematical Problems in Engineering. 2022;2022:1–9. https://doi.org/10.1155/2022/9945758WangJLiHMengFMaRLaiQLiJControl Strategy of Master-Slave Manipulator Based on Force Feedback for Decommissioning of Nuclear Facilities. Mathematical Problems in Engineering. 2022;2022:1–9. https://doi.org/10.1155/2022/9945758Search in Google Scholar
Jin X, Guo S, Guo J, Shi P, Kawanishi M, Hirata H. Active Suppression Method of Dangerous Behaviors for Robot-Assisted Vascular Interventional Surgery. IEEE Transactions on Instrumentation and Measurement. 2022;71:1–9. https://doi.org/10.1109/tim.2022.3170997JinXGuoSGuoJShiPKawanishiMHirataH.Active Suppression Method of Dangerous Behaviors for Robot-Assisted Vascular Interventional Surgery. IEEE Transactions on Instrumentation and Measurement. 2022;71:1–9. https://doi.org/10.1109/tim.2022.3170997Search in Google Scholar
Shi H, Zhang B, Mei X, Song Q. Realization of Force Detection and Feedback Control for Slave Manipulator of Master/Slave Surgical Robot. Sensors. 2021;21(22):7489. https://doi.org/10.3390/s21227489ShiHZhangBMeiXSongQ.Realization of Force Detection and Feedback Control for Slave Manipulator of Master/Slave Surgical Robot. Sensors. 2021;21(22):7489. https://doi.org/10.3390/s21227489Search in Google Scholar
Azizi A, Latifinavid M. Hybrid Artificial Intelligence Algorithm for Optimizing RFID Network Planning in Smart Manufacturing. Journal of Robotics. 2020;2020:1–14. https://doi.org/10.1155/2020/8564140AziziALatifinavidM.Hybrid Artificial Intelligence Algorithm for Optimizing RFID Network Planning in Smart Manufacturing. Journal of Robotics. 2020;2020:1–14. https://doi.org/10.1155/2020/8564140Search in Google Scholar
Azizi A, Latifinavid M. Artificial Neural Network Approach for Dynamic Behavior Optimization of Robotic Arms in Industry 4.0. Journal of Robotics. 2017;2017:1–10. https://doi.org/10.1155/2017/8728209AziziALatifinavidM.Artificial Neural Network Approach for Dynamic Behavior Optimization of Robotic Arms in Industry 4.0. Journal of Robotics. 2017;2017:1–10. https://doi.org/10.1155/2017/8728209Search in Google Scholar
Latifinavid M, Azizi A. Development of a Vision-Based Unmanned Ground Vehicle for Mapping and Tennis Ball Collection: A Fuzzy Logic Approach. Future Internet. 2023;15(2):84. https://doi.org/10.3390/fi15020084LatifinavidMAziziA.Development of a Vision-Based Unmanned Ground Vehicle for Mapping and Tennis Ball Collection: A Fuzzy Logic Approach. Future Internet. 2023;15(2):84. https://doi.org/10.3390/fi15020084Search in Google Scholar
Azizi A, Latifinavid M. Ring Probabilistic Logic Neural Network for Active Suspension Control in Vehicles. In: Ahram T, Taiar R, Colson S, Choplin A eds. Advances in Intelligent Systems and Computing. Singapore: Springer. 2019;943:35–45. https://doi.org/10.1007/978-981-13-2640-0_4AziziALatifinavidM.Ring Probabilistic Logic Neural Network for Active Suspension Control in Vehicles. In: AhramTTaiarRColsonSChoplinA eds. Advances in Intelligent Systems and Computing. Singapore: Springer. 2019;943:35–45. https://doi.org/10.1007/978-981-13-2640-0_4Search in Google Scholar
Kim Y-S, Dagalakis NG, Marvel J, Cheok G. Design and Testing of Wireless Motion Gauges for Two Collaborative Robot Arms. Measurement Science Review. 2022;22(2):84–91. https://doi.org/10.2478/msr-2022-0011KimY-SDagalakisNGMarvelJCheokG.Design and Testing of Wireless Motion Gauges for Two Collaborative Robot Arms. Measurement Science Review. 2022;22(2):84–91. https://doi.org/10.2478/msr-2022-0011Search in Google Scholar
Liu Q, Guo H, Ma Y, Tian W, Zhang Z, Li B. Real-time error compensation of a 5-axis machining robot using externally mounted encoder systems. The International Journal of Advanced Manufacturing Technology. 2022;120(3–4):2793–802. https://doi.org/10.1007/s00170-022-08867-0LiuQGuoHMaYTianWZhangZLiB.Real-time error compensation of a 5-axis machining robot using externally mounted encoder systems. The International Journal of Advanced Manufacturing Technology. 2022;120(3–4):2793–802. https://doi.org/10.1007/s00170-022-08867-0Search in Google Scholar
Wang X, Li H, Zhang Y. 3D Scanning Based Precision Evaluation of Industrial Robots. Robotics and Computer-Integrated Manufacturing. 2019; 56; 123–130. https://doi.org/10.1016/j.rcim.2018.10.007WangXLiHZhangY.3D Scanning Based Precision Evaluation of Industrial Robots. Robotics and Computer-Integrated Manufacturing. 2019; 56; 123–130. https://doi.org/10.1016/j.rcim.2018.10.007Search in Google Scholar
Chen J, Zhou F, Wu X. Multisensor Measurement System for Robot Positioning Accuracy Assessment. Sensors. 2020;20(4);1015. https://doi.org/10.3390/s20041015ChenJZhouFWuX.Multisensor Measurement System for Robot Positioning Accuracy Assessment. Sensors. 2020;20(4);1015. https://doi.org/10.3390/s20041015Search in Google Scholar
Li M, Xu W, Chen L. (2018). Integration of Structured Light scanning in Robot Trajectory Control for Enhanced Precision. IEEE Transactions on Industrial Electronics. 20188; 65(8): 6712–6720. https://doi.org/10.1109/TIE.2017.2787563LiMXuWChenL. (2018). Integration of Structured Light scanning in Robot Trajectory Control for Enhanced Precision. IEEE Transactions on Industrial Electronics. 20188; 65(8): 6712–6720. https://doi.org/10.1109/TIE.2017.2787563Search in Google Scholar
Chang Q, Gao X, Liu Y, Deng J, Zhang S, Chen W. Development of a cross-scale 6-DOF piezoelectric stage and its application in assisted puncture. Mechanical Systems and Signal Processing. 2022;174:109072. https://doi.org/10.1016/j.ymssp.2022.109072ChangQGaoXLiuYDengJZhangSChenW.Development of a cross-scale 6-DOF piezoelectric stage and its application in assisted puncture. Mechanical Systems and Signal Processing. 2022;174:109072. https://doi.org/10.1016/j.ymssp.2022.109072Search in Google Scholar
LI H, Xu Y, Zhang C, Yang H. Kinematic modeling and control of a novel pneumatic soft robotic arm. Chinese Journal of Aeronautics. 2022;35(7):310–9. https://doi.org/10.1016/j.cja.2021.07.015LIHXuYZhangCYangH.Kinematic modeling and control of a novel pneumatic soft robotic arm. Chinese Journal of Aeronautics. 2022;35(7):310–9. https://doi.org/10.1016/j.cja.2021.07.015Search in Google Scholar
Jakubowicz M. Accuracy of roundness assessment using air gauge with the slot-shaped measuring nozzle. Measurement. 2020 Apr;155:107558. https://doi.org/10.1016/j.measurement.2020.107558JakubowiczM.Accuracy of roundness assessment using air gauge with the slot-shaped measuring nozzle. Measurement. 2020Apr;155:107558. https://doi.org/10.1016/j.measurement.2020.107558Search in Google Scholar
Dietrich E, Schulze A. Statistical Procedures for Machine and Process Qualification. 1st ed. Munich: Hanser Publications; 2010.DietrichESchulzeA.Statistical Procedures for Machine and Process Qualification. 1st ed. Munich: Hanser Publications; 2010.Search in Google Scholar