This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Barbosa MF, Souza AMCD. Reusing Surlyn® Ionomer Scraps in LDPE Blends: Mechanical and Thermal Properties. Mater Res. 2023; 26 (suppl1): e20230019. DOI:10.1590/1980-5373-mr-2023-0019BarbosaMFSouzaAMCD.Reusing Surlyn® Ionomer Scraps in LDPE Blends: Mechanical and Thermal Properties. Mater Res. 2023; 26 (suppl1): e20230019. DOI:10.1590/1980-5373-mr-2023-0019Open DOISearch in Google Scholar
Kismet Y, Dogan A, Wagner MH. Thermoset powder coating wastes as filler in LDPE – Characterization of mechanical, thermal and morphological properties. Polym Test. 2021 Jan;93:106897.KismetYDoganAWagnerMH.Thermoset powder coating wastes as filler in LDPE – Characterization of mechanical, thermal and morphological properties. Polym Test. 2021Jan;93:106897.Search in Google Scholar
Sirin K, Cengel Ö, Canli M. Thermal and mechanical properties of LDPE by the effects of organic peroxides: Mechanical Properties of LDPE. Polym Adv Technol. 2017 Jul;28(7):876–85.SirinKCengelÖCanliM.Thermal and mechanical properties of LDPE by the effects of organic peroxides: Mechanical Properties of LDPE. Polym Adv Technol. 2017Jul;28(7):876–85.Search in Google Scholar
Peršić A, Popov N, Kratofil Krehula L, Krehula S. The Influence of Different Hematite (α-Fe2O3) Particles on the Thermal, Optical, Mechanical, and Barrier Properties of LDPE/Hematite Composites. Materials. 2023 Jan 11;16(2):706PeršićAPopovNKratofil KrehulaLKrehulaS.The Influence of Different Hematite (α-Fe2O3) Particles on the Thermal, Optical, Mechanical, and Barrier Properties of LDPE/Hematite Composites. Materials. 2023Jan11;16(2):706Search in Google Scholar
Dwivedi UK, Hashmi SAR, Naik A, Joshi R, Chand N. Development and physico‐mechanical behavior of LDPE–sisal prepreg‐based composites. Polym Compos. 2013 May;34(5):650–5.DwivediUKHashmiSARNaikAJoshiRChandN.Development and physico‐mechanical behavior of LDPE–sisal prepreg‐based composites. Polym Compos. 2013May;34(5):650–5.Search in Google Scholar
Čech Barabaszová K, Holešová S, Hundáková M, Kalendová A. Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers. Polymers. 2020 Nov 27;12(12):2811.Čech BarabaszováKHolešováSHundákováMKalendováA.Tribo-Mechanical Properties of the Antimicrobial Low-Density Polyethylene (LDPE) Nanocomposite with Hybrid ZnO–Vermiculite–Chlorhexidine Nanofillers. Polymers. 2020Nov27;12(12):2811.Search in Google Scholar
Janik J. Właściwości mieszanin polimerów termoplastycznych PBT/LDPE. Przetw Tworzyw. 2015;21(6 (168):451–5.JanikJ.Właściwości mieszanin polimerów termoplastycznych PBT/LDPE. Przetw Tworzyw. 2015;21(6 (168):451–5.Search in Google Scholar
Czarnecka-Komorowska D, Wiszumirska K, Garbacz T. FILMS LDPE/LLDPE MADE FROM POST - CONSUMER PLASTICS: PROCESSING, STRUCTURE, MECHANICAL PROPERTIES. Adv Sci Technol Res J. 2018 Sep 1;12(3):134–42.Czarnecka-KomorowskaDWiszumirskaKGarbaczT.FILMS LDPE/LLDPE MADE FROM POST - CONSUMER PLASTICS: PROCESSING, STRUCTURE, MECHANICAL PROPERTIES. Adv Sci Technol Res J. 2018Sep1;12(3):134–42.Search in Google Scholar
Ono K, Yamaguchi M. Thermal and mechanical modification of LDPE in single‐screw extruder. J Appl Polym Sci. 2009 Aug 5;113(3): 1462–70.OnoKYamaguchiM.Thermal and mechanical modification of LDPE in single‐screw extruder. J Appl Polym Sci. 2009Aug5;113(3): 1462–70.Search in Google Scholar
Sailaja RRN, Seetharamu S. Mechanical and thermal properties of LDPE‐cellulose acetate phthalate blends—Effect of maleic anhydride‐ grafted LDPE compatibilizer. J Appl Polym Sci. 2009 Apr 15;112(2):649–59.SailajaRRNSeetharamuS.Mechanical and thermal properties of LDPE‐cellulose acetate phthalate blends—Effect of maleic anhydride‐ grafted LDPE compatibilizer. J Appl Polym Sci. 2009Apr15;112(2):649–59.Search in Google Scholar
Yao Z, Heng JYY, Lanceros-Méndez S, Pegoretti A, Xia M, Tang J, et al. Surface free energy and mechanical performance of LDPE/CBF composites containing toxic-metal free filler. Int J Adhes Adhes. 2017 Sep;77:58–62.YaoZHengJYYLanceros-MéndezSPegorettiAXiaMTangJSurface free energy and mechanical performance of LDPE/CBF composites containing toxic-metal free filler. Int J Adhes Adhes. 2017Sep;77:58–62.Search in Google Scholar
Koffi A, Koffi D, Toubal L. Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites. Polym Test. 2021 Jan;93:106956.KoffiAKoffiDToubalL.Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites. Polym Test. 2021Jan;93:106956.Search in Google Scholar
Karthikeyan K, Russell BP, Fleck NA, O’Masta M, Wadley HNG, Deshpande VS. The soft impact response of composite laminate beams. Int J Impact Eng. 2013 Oct;60:24–36.KarthikeyanKRussellBPFleckNAO’MastaMWadleyHNGDeshpandeVS.The soft impact response of composite laminate beams. Int J Impact Eng. 2013Oct;60:24–36.Search in Google Scholar
Rana AK, Mandal A, Banerjee AN. Jute sliver-LDPE composites: Effect of aqueous consolidation on mechanical and dynamic properties. J Appl Polym Sci. 2000 May 2;76(5):684–9.RanaAKMandalABanerjeeAN.Jute sliver-LDPE composites: Effect of aqueous consolidation on mechanical and dynamic properties. J Appl Polym Sci. 2000May2;76(5):684–9.Search in Google Scholar
Yazdani H, Ghasemi H, Wallace C, Hatami K. Mechanical properties of carbon nanotube‐filled polyethylene composites: A molecular dynamics simulation study. Polym Compos [Internet]. 2019 Mar [cited 2024 Oct 24];40(S2). Available from: https://4spepublications.onlineli-brary.wiley.com/doi/10.1002/pc.25175YazdaniHGhasemiHWallaceCHatamiK.Mechanical properties of carbon nanotube‐filled polyethylene composites: A molecular dynamics simulation study. Polym Compos [Internet]. 2019Mar [cited 2024 Oct 24];40(S2). Available from: https://4spepublications.onlineli-brary.wiley.com/doi/10.1002/pc.25175Search in Google Scholar
Sahraeian R, Esfandeh M, Hashemi SA. Rheological, Thermal and Dynamic Mechanical Studies of the Ldpe/Perlite Nanocomposites. Polym Polym Compos. 2013 May;21(4):243–50.SahraeianREsfandehMHashemiSA.Rheological, Thermal and Dynamic Mechanical Studies of the Ldpe/Perlite Nanocomposites. Polym Polym Compos. 2013May;21(4):243–50.Search in Google Scholar
Xu M ming, Huang G yan, Feng S shan, McShane G, Stronge W. Static and Dynamic Properties of Semi-Crystalline Polyethylene. Polymers. 2016 Mar 28;8(4):77.Xu MmingHuang GyanFeng SshanMcShaneGStrongeW.Static and Dynamic Properties of Semi-Crystalline Polyethylene. Polymers. 2016Mar28;8(4):77.Search in Google Scholar
Zhu T, Li X, Zhao X, Zhang X, Lu Y, Zhang L. Stress-strain behavior and corresponding crystalline structures of four types of polyethylene under a wide range of strain rates. Polym Test. 2022 Feb;106:107460.ZhuTLiXZhaoXZhangXLuYZhangL.Stress-strain behavior and corresponding crystalline structures of four types of polyethylene under a wide range of strain rates. Polym Test. 2022Feb;106:107460.Search in Google Scholar
Mohagheghian I, McShane GJ, Stronge WJ. Impact perforation of monolithic polyethylene plates: Projectile nose shape dependence. Int J Impact Eng. 2015 Jun;80:162–76.MohagheghianIMcShaneGJStrongeWJ.Impact perforation of monolithic polyethylene plates: Projectile nose shape dependence. Int J Impact Eng. 2015Jun;80:162–76.Search in Google Scholar
Sandeep J, Murali V. Low Density Polyethylene/Polymeric Microballon Syntactic Foam: Strain Rate Dependent Compressive Response. J Polym Mater. 2017;34(2).SandeepJMuraliV.Low Density Polyethylene/Polymeric Microballon Syntactic Foam: Strain Rate Dependent Compressive Response. J Polym Mater. 2017;34(2).Search in Google Scholar
Obst M, Kurpisz D, Jakubowski M. Experimental and Analytical Approaches on Air Spring Absorbers Made of LDPE Polymer. Acta Mech Autom. 2024 Jun 1;18(2):314–22.ObstMKurpiszDJakubowskiM.Experimental and Analytical Approaches on Air Spring Absorbers Made of LDPE Polymer. Acta Mech Autom. 2024Jun1;18(2):314–22.Search in Google Scholar
Drane P, De Jesus-Vega M, Inalpolat M, Sherwood J, Orbey N. Inductive quantification of energy absorption of high-density polyethylene foam for repeated blunt impact. Proc Inst Mech Eng Part J Mater Des Appl. 2020 Mar;234(3):531–45.DranePDe Jesus-VegaMInalpolatMSherwoodJOrbeyN.Inductive quantification of energy absorption of high-density polyethylene foam for repeated blunt impact. Proc Inst Mech Eng Part J Mater Des Appl. 2020Mar;234(3):531–45.Search in Google Scholar
Sahu DP, Mohanty SC. Static and dynamic analysis of polyethylene terephthalate foam core and different natural fiber-reinforced laminated composite-based sandwich plates through experimental and numerical simulation. Mechanics of Advanced Materials and Structures. 2024 Aug 8;1–20.SahuDPMohantySC.Static and dynamic analysis of polyethylene terephthalate foam core and different natural fiber-reinforced laminated composite-based sandwich plates through experimental and numerical simulation. Mechanics of Advanced Materials and Structures. 2024Aug8;1–20.Search in Google Scholar
Sahu DP, Das R, Prusty JK, Mohanty SC. Frequency analysis of skew sandwich plates with polyethylene terephthalate foam-core and car-bon/basalt fiber-reinforced hybrid face layers using ANFIS model and experimental validation. Mechanics of Advanced Materials and Structures. 2024 Dec 11;1–23.SahuDPDasRPrustyJKMohantySC.Frequency analysis of skew sandwich plates with polyethylene terephthalate foam-core and car-bon/basalt fiber-reinforced hybrid face layers using ANFIS model and experimental validation. Mechanics of Advanced Materials and Structures. 2024Dec11;1–23.Search in Google Scholar
Sahu DP, Das R, Prusty JK, Mohanty SC. Flexural and dynamic characterization of carbon/basalt hybrid laminated composite sandwich plates with PET foam core: A numerical and experimental approach. Structures. 2025 Feb;72:108204.SahuDPDasRPrustyJKMohantySC.Flexural and dynamic characterization of carbon/basalt hybrid laminated composite sandwich plates with PET foam core: A numerical and experimental approach. Structures. 2025Feb;72:108204.Search in Google Scholar
Antony Vincent V, Kailasanathan C, Ramesh G, Maridurai T, Arun Prakash VR. Fabrication and Characterization of Hybrid Natural Fibre-Reinforced Sandwich Composite Radar Wave Absorbing Structure for Stealth Radomes. Trans Electr Electron Mater. 2021 Dec;22(6):794– 802.Antony VincentVKailasanathanCRameshGMariduraiTArun PrakashVR.Fabrication and Characterization of Hybrid Natural Fibre-Reinforced Sandwich Composite Radar Wave Absorbing Structure for Stealth Radomes. Trans Electr Electron Mater. 2021Dec;22(6):794– 802.Search in Google Scholar
Das R, Sahu DP, Bisoyi DK. Silane‐treated kapok fiber/epoxy composites for aerospace cabin interiors: Synthesis and characterization. Polymer Composites. 2024 Dec 6;pc.29359.DasRSahuDPBisoyiDK.Silane‐treated kapok fiber/epoxy composites for aerospace cabin interiors: Synthesis and characterization. Polymer Composites. 2024Dec6;pc.29359.Search in Google Scholar
Sahu DP, Das R, Mohanty SC. Multiwalled carbon nanotubes filled pineapple/kenaf hybrid laminated composites structures for electromagnetic interface shielding applications. Polymer Composites. 2024 Dec 26;pc.29428.SahuDPDasRMohantySC.Multiwalled carbon nanotubes filled pineapple/kenaf hybrid laminated composites structures for electromagnetic interface shielding applications. Polymer Composites. 2024Dec26;pc.29428.Search in Google Scholar