This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Saha P. Review of two-phase steam-water critical flow models with emphasis on thermal nonequilibrium.1977; NUREG/CR-0417. United States.Search in Google Scholar
Richter HJ. Separated two-phase flow model: application to critical two-phase flow. International Journal of Multiphase Flow. 1983; 9(5): 511-530. ISSN 0301-9322. https://doi.org/10.1016/0301-9322(83)90015-0Search in Google Scholar
Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. 1975. Second Edition. Springer.Search in Google Scholar
Staedtke H. Gasdynamic Aspects of Two-Phase Flow: Hyperbolicity, Wave Propagation Phenomena and Related Numerical Methods. Wiley-VCH. 1st edition (October 6, 2006).Search in Google Scholar
Baer MR, Nunziato, JW. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow. 1986;12: 861–889.Search in Google Scholar
Zhang C, Menshov I, Wang L, Shen Z. Diffuse interface relaxation model for two-phase compressible flows with diffusion processes. Journal of Computational Physics. 2022; 466: 111356. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2022.111356Search in Google Scholar
Bdzil JB, Menikoff R, Kapila AK, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Physics of fluids. 1999; 11: 2; 378-402. https://doi.org/10.1063/1.869887Search in Google Scholar
Kapila AK, Menikoff R, Bdzil JB, Stewart DS. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Physics of fluids. 2001;13(10):3002-3024. https://doi.org/10.1063/1.1398042Search in Google Scholar
Pelanti M. Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer. International Journal of Multiphase Flow. 2022;153:104097. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104097Search in Google Scholar
Saurel R, Petitpas F, Abgrall R. Modelling phase transition in meta-stable liquids: application to cavitating and flashing flows. Journal of Fluid Mechanics. 2008;60:313–350. https://doi.org/10.1017/S0022112008002061Search in Google Scholar
LeMartelot S, Nkonga B, Saurel R, Liquid and liquid-gas flows at all speeds. Journal of Computational Physics 255. 2013;53–82. https://doi.org/10.1016/j.jcp.2013.08.001Search in Google Scholar
Lund H, Aursand P. Two-Phase Flow of CO2 with Phase Transfer. Energy Procedia. 2012;23:246-255. ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2012.06.034Search in Google Scholar
Le Martelot S, Saurel R, Nkonga B. Towards the direct numerical simulation of nucleate boiling flows. International Journal of Multi-phase Flow. 2014;66:62-78. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.010Search in Google Scholar
Saurel R, Boivin P, Le Métayer O. A general formulation for cavitating, boiling and evaporating flows. Computers & Fluids. 2016; 128: 53-64, ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2016.01.004Search in Google Scholar
Chiapolino A, Boivin P, Saurel. A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows. Computers & Fluids. 2017; 150: 31-45. ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2017.03.022Search in Google Scholar
Demou AD, Scapin N, Pelanti M, Brandt L. A pressure-based diffuse interface method for low-Mach multiphase flows with mass transfer. Journal of Computational Physics. 2022;448:110730. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2021.110730Search in Google Scholar
Stewart HB, Wendroff B. Two-phase flow: models and methods. Journal of Computational Physics. 1984;56(3):363-409.Search in Google Scholar
Bilicki Z, Kestin J. Physical aspects of the relaxation model in two-phase flow. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1990;428(1875):379-397.Search in Google Scholar
Downar-Zapolski P, Bilicki Z, Bolle L, Franco J. The non-equilibrium relaxation model for one-dimensional flashing liquid flow. International Journal of Multiphase Flow. 1996;22(3): 473-483. ISSN 0301-9322. https://doi.org/10.1016/0301-9322(95)00078-XSearch in Google Scholar
Atkins P, de Paula J. Physical Chemistry. 2006; 8th ed. W.H. Freeman: 805-7. ISBN 0-7167-8759-8Search in Google Scholar
Einstein A. Schallausbreitung in teilweise dissoziierten Gasen [Sound propagation in partly dissociated gases]: 380-385.Search in Google Scholar
Mandelshtam, LI, Leontovich EM. A theory of sound absorption in liquids. Zh. Exp. Teor Fiz. 1937;7:434-449 (in Russian).Search in Google Scholar
Bauer EG, Houdayer, GR, Sureau HM. A non-equilibrium axial flow model in application to loss-of-coolant accident analysis. The CYSTERE system code. OECD/NEA Specialist Meeting on Transient Two-phase Flow. 1976. Toronto Canada.Search in Google Scholar
Angielczyk W, Bartosiewicz Y, Butrymowicz D, Seynhaeve J-M. 1-D modelling of supersonic carbon dioxide two-phase flow through ejector motive nozzle. International Refrigeration and Air Conditioning Conference. 2010. Purdue USA.Search in Google Scholar
Haida M, Smolka J, Hafner A, Palacz M, Banasiak K, Nowak AJ. Modified homogeneous relaxation model for the R744 transcritical flow in a two-phase ejector, International Journal of Refrigeration. 2018;85:314-333. ISSN 0140-7007. https://doi.org/10.1016/j.ijrefrig.2017.10.010Search in Google Scholar
Feburie V, Giot M, Granger S, Seynhaeve J. A model for choked flow through cracks with inlet subcooling. International Journal of Multi-phase Flow. 1993;19(4):541–562. https://doi:10.1016/0301-9322(93)90087-bSearch in Google Scholar
Attou A, Seynhaeve JM. Steady-state critical two-phase flashing flow with possible multiple choking phenomenon. Part 1: physical modelling and numerical procedure. Journal of Loss Prevention in the Industries. 1999;12:335-345. https://doi.org/10.1016/S0950-4230(98)00017-5Search in Google Scholar
De Lorenzo M, Lafon P, Seynhaeve JM, Bartosiewicz Y. Benchmark of Delayed Equilibrium Model (DEM) and classic two-phase critical flow models against experimental data. International Journal of Multiphase Flow. 2017;92:112-130. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.004Search in Google Scholar
Angielczyk W, Bartosiewicz Y, Butrymowicz D. Development of Delayed Equilibrium Model for CO2 convergent-divergent nozzle transonic flashing flow. International Journal of Multiphase Flow. 2020;131:103351. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103351Search in Google Scholar
Tammone C, Romei A, Persico G, Haglind F. Extension of the delayed equilibrium model to flashing flows of organic fluids in converging-diverging nozzles. International Journal of Multiphase Flow. 2024; 171:104661. ISSN 0301-9322. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104661Search in Google Scholar
Ambroso A, Hérard J-M, Hurisse O. A method to couple HEM and HRM two-phase flow models. Computers & Fluids. 2009;38(4):738-756, ISSN 0045-7930. https://doi.org/10.1016/j.compfluid.2008.04.016Search in Google Scholar
Palacz M, Haida M, Smolka J, Nowak AJ, Banasiak K, Hafner A. HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems. Applied Thermal Engineering. 2017;115:160-169. ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2016.12.122Search in Google Scholar
James F, Mathis H. A relaxation model for liquid-vapor phase change with metastability. 2015 arXiv preprint arXiv:1507.06333. https://doi.org/10.48550/arXiv.1507.06333Search in Google Scholar
De Lorenzo M, Lafon Ph, Pelanti M. A hyperbolic phase-transition model with non-instantaneous EoS-independent relaxation procedures. Journal of Computational Physics. 2019;379: 279-308. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2018.12.002Search in Google Scholar
De Lorenzo M, Lafon Ph, Pelanti M, Pantano A, Di Matteo M, Bartosiewicz Y, Seynhaeve JM. A hyperbolic phase-transition model coupled to tabulated EoS for two-phase flows in fast depressurizations. Nuclear Engineering and Design. 2021;371:110954. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2020.110954Search in Google Scholar
Ward CA. The rate of gas absorption at a liquid interface. The Journal of Chemical Physics. 1977; 67(1): 229-235. https://doi.org/10.1063/1.434547Search in Google Scholar
Ward CA, Findlay RD, Rizk M. Statistical rate theory of interfacial transport. I. Theoretical development. The Journal of Chemical Physics. 1982;76(11):5599-5605. https://doi.org/10.1063/1.442865Search in Google Scholar
Ward CA, Fang G. Expression for predicting liquid evaporation flux: Statistical rate theory approach. Physical Review. 1999;59(1): 429. https://doi.org/10.1103/PhysRevE.59.429Search in Google Scholar
Schrage RW. A theoretical study of interphase mass transfer. 1953. Columbia University Press. https://doi.org/10.7312/schr90162Search in Google Scholar
Banasiak K, Hafner A. 1D Computational model of a two-phase R744 ejector for expansion work recovery. International Journal of Thermal Sciences. 2011;50(11):2235-2247. ISSN 1290-0729. https://doi.org/10.1016/j.ijthermalsci.2011.06.007Search in Google Scholar
Bodys J, Smolka J, Palacz M, HaidaM, Banasiak K. Non-equilibrium approach for the simulation of CO2 expansion in two-phase ejector driven by subcritical motive pressure. International Journal of Refrigeration. 2020;114:32-46. ISSN 0140-7007. https://doi.org/10.1016/j.ijrefrig.2020.02.015Search in Google Scholar
Bodys J, Smolka J, Palacz M, Haida M, Banasiak K, Nowak AJ. Effect of turbulence models and cavitation intensity on the motive and suction nozzle mass flow rate prediction during a non-equilibrium expansion process in the CO2 ejector. Applied Thermal Engineering. 2022;201:117743, ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2021.117743Search in Google Scholar
Bilicki Z, Dafermos C, Kestin J, Majda G, Zeng DL. Trajectories and singular points in steady-state models of two-phase flows. International journal of multiphase flow. 1987; 13(4): 511-533.Search in Google Scholar
De Sterck H. Critical point analysis of transonic flow profiles with heat conduction. SIAM Journal on Applied Dynamical Systems. 2007; 6(3): 645-662. https://doi.org/10.1137/060677458Search in Google Scholar
Angielczyk W, Bartosiewicz Y, Butrymowicz, Seynhaeve, JM. 1-D modeling of supersonic carbon dioxide two-phase flow through ejector motive nozzle. International Refrigeration and Air Conditioning Conference. 2010.Search in Google Scholar
Angielczyk W, Śmierciew K, Butrymowicz D. Application of a fast transonic trajectory determination approach in 1-D modelling of steady-state two-phase carbon dioxide flow. In E3S Web of Conferences. 2019; 128: 06005, EDP Sciences. https://doi.org/10.1051/e3sconf/201912806005Search in Google Scholar
Angielczyk W, Seynhaeve JM, Gagan J, Bartosiewicz Y, Butrymowicz D. Prediction of critical mass rate of flashing carbon dioxide flow in convergent-divergent nozzle. Chemical Engineering and Processing - Process Intensification. 2019; 143: 107599. ISSN 0255-2701. https://doi.org/10.1016/j.cep.2019.107599Search in Google Scholar
Angielczyk W, Butrymowicz D. Revisiting the relaxation equations describing nonequilibrium mass transfer in the transonic homogeneous flashing flow models. Postępy w badaniach wymiany ciepła i masy: Monografia Konferencyjna XVI Sympozjum Wymiany Ciepła I Masy. 2022; 113-123. Białystok. Oficyna Wydawnicza Politechniki Białostockiej. ISBN 978-83-67185-30-1. https://doi.org/10.24427/978-83-67185-30-1_13Search in Google Scholar