Cite

Hans P Moravec. Obstacle Avoidance and Navigation by a Seeing Robot Rover in the Real World. SPittsburgh, Penna Carnegie-Mellon Univ Robot Institute. 1980. Search in Google Scholar

D. Nister ON and JB. Visual odometry. Proc 2004 IEEE Comput Soc Conf Comput Vis Pattern Recognition,004 CVPR 2004. Washington DC. USA. 2004;1:I–I. Search in Google Scholar

Longuet-Higgins H. A computer algorithm for reconstructing a scene from two projections. Nature. 1981;293:133–5. Search in Google Scholar

CG Harris JMP. 3d positional integration from image sequences. Image Vis Comput Sci Direct. 1988;6(2):87–90. Search in Google Scholar

Twinanda AP, Shehata S, Mutter D, Marescaux J, De Mathelin M and NP. Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging. 2016;36(1):86–97. Search in Google Scholar

Bodenstedt S, Ohnemus A, Katic D, Wekerle AL, Wagner M, Kenngott H, Muller-Stich B, Dillmann R and SS. Real-time image-based instrument classification for laparoscopic surgery. 2018. preprint arXiv:1808.00178. Search in Google Scholar

Yang IC, Chen S. Precision cultivation system for greenhouse production. In Intelligent Environmental Sensing. Springer Berlin/Heidelberg. Ger Google Sch. 2015;191–211. Search in Google Scholar

Borges DL, Guedes ST, Nascimento AR, Melo-Pinto P. Detecting and grading severity of bacterial spot caused by Xanthomonas spp. in tomato (Solanum lycopersicon) fields using visible spectrum images. Comput Electron Agric. 2016;149–159. Search in Google Scholar

Liu X, Zhao D, Jia W, Ji W, Ruan C, Sun Y. Cucumber fruits detection in greenhouses based on instance segmentation. IEEE Access. 2019;139635–139642. Search in Google Scholar

Asdemir S, Urkmez A, Inal S. Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis. Comput Electron Agric. 2011;76, 189–197. Search in Google Scholar

Norton T, Chen C, Larsen MLV, Berckmans D. Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Anim 1. 2019;3:3009–3017. Search in Google Scholar

Chou WC, Tsai WR, Chang HH, Lu SY, Lin KF, Lin P. Prioritization of pesticides in crops with a semi-quantitative risk ranking method for Taiwan postmarket monitoring program. J Food Drug Anal. 2019;27: 347–354. Search in Google Scholar

Kalman RE. A new approach to linear filtering and prediction problems. Trans ASME. J Basic Eng. 1960;82(1):35–45. Search in Google Scholar

Julier SJ, Uhlmann JK. A counter example to the theory of simultaneous localization and map building. Proc 2001 ICRA IEEE Int Conf Robot Autom (Cat No01CH37164). Seoul. Korea (South). 2001; 4: 4238-4243. doi:101109/ROBOT2001933280 Search in Google Scholar

Gamini Dissanayake MWM, Newman P, Clark S, Durrant-Whyte HF, Csorba M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robot Autom. 2001;17(3):229–41. Search in Google Scholar

Smith R, Self M, Cheeseman P. A stochastic map for uncertain spatial relationships. Mach Intell Pattern Recognit [Internet]. 1988;5:435–61. Available from: http://portal.acm.org/citation.cfm?id=57472 Search in Google Scholar

Moutarlier P, Chatila R. An Experimental System for Incremental Environment Modelling by an Autonomous Mobile Robot. LAAS-CNRS 7. Ave du Colonel Roche 31077 Toulouse. Search in Google Scholar

Jazwinski AH. Stochastic Processes and Filtering Theory. 1970;64. Search in Google Scholar

Zhu J, Zheng N, Yuan Z, Zhang QXZ and YH. A SLAM algorithm based on the central difference kaiman filter. IEEE Intell Veh Symp Xi’an. China. 2009;123–8. Search in Google Scholar

Jiang X, Li T, Yu Y. A novel SLAM algorithm with Adaptive Kalman filter. ICARM 2016 Int Conf Adv Robot Mechatronics. 2016; 107–11. Search in Google Scholar

Tian Y, Suwoyo H, Wang W, Mbemba D, Li L. An AEKF-SLAM Algorithm with Recursive Noise Statistic Based on MLE and EM. J Intell Robot Syst. 2020;97:339–55. Search in Google Scholar

Julier SJ, Uhlmann JK. New extension of the Kalman filter to nonlinear systems. Proc Vol 3068, Signal Process Sens Fusion, Target Recognit VI. 1997;3068. Search in Google Scholar

Havangi R. Robust SLAM: SLAM base on H ∞ square root unscented Kalman filter. Nonlinear Dyn. 2016;83(1):767–79. Search in Google Scholar

Bahraini M, Bozorg M, Rad A. A new adaptive UKF algorithm to improve the accuracy of SLAM. Int J Robot. 2019;5(1):35–46. Search in Google Scholar

Bahraini MS. On the Efficiency of SLAM Using Adaptive Unscented Kalman Filter. Iran J Sci Technol Trans Mech Eng [Internet]. 2020;44:727–35. Available from: https://doi.org/10.1007/s40997-019-00294-z Search in Google Scholar

Tang M, Chen Z, Yin F. SLAM with Improved Schmidt Orthogonal Unscented Kalman Filter. Int J Control Autom Syst. 2022;20(1598–6446):1327–35. Search in Google Scholar

Liu D, Duan J and HS. A Strong Tracking Square Root Central Difference FastSLAM for Unmanned Intelligent Vehicle With Adaptive Partial Systematic Resampling. EEE Trans Intell Transp Syst. 2016;17(11):3110–20. Search in Google Scholar

Maybeck PS. Stochastic Models, Estimation, and Control. Acad Press. 1979;1:282. Search in Google Scholar

Garritsen T. Using the Extended Information Filter for Localization of Humanoid Robots on a Soccer Field. 2018;1–25. Search in Google Scholar

Thrun S, Liu Y, Koller D, Ng AY, Ghahramani Z, Durrant-Whyte H. Simultaneous localization and mapping with sparse extended information filters. Int J Rob Res. 2004;23(7–8):693–716. Search in Google Scholar

Walter MR, Eustice RM, Leonard JJ. Exactly sparse extended information filters for feature-based SLAM. Int J Rob Res. 2007;26(4):335–59. Search in Google Scholar

He B, Liu Y, Dong D, Shen Y, Yan T, Nian R. Simultaneous localization and mapping with iterative sparse extended information filter for autonomous vehicles. Sensors (Switzerland). 2015;15(2): 19852–79. Search in Google Scholar

Zhang H, Liu Y, Tan J, Xiong N. RGB-D SLAM Combining Visual Odometry and Extended Information Filter. Sensors [Internet]. 2015;15:18742–66. Available from: www.mdpi.com/journal/sensors Search in Google Scholar

Ila V, Porta JM, Andrade-Cetto J. Information-based compact pose SLAM. IEEE Trans Robot. 2010;26(1):78–93. Search in Google Scholar

Del Moral P. Nonlinear filtering: Interacting particle resolution. Comptes Rendus l’Académie des Sci - Ser I - Math. 1996;2(4):555–80. Search in Google Scholar

Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE. 1993;140(2): 107–13. Search in Google Scholar

Liu JS, Rong C. Sequential Monte Carlo methods for dynamic systems. J Am Stat Assoc. 1998;93(443):1032–1044. Search in Google Scholar

Øivind Skare EB and LH. Improved Sampling-Importance Resampling and Reduced Bias Importance Sampling. Scand J Stat. 2003;30(4):719-737. Search in Google Scholar

Bruno MGS. Regularized Particle Filters. Seq Monte Carlo Methods Nonlinear Discret Filtering Synth Lect Signal Process Springer. 2013. Search in Google Scholar

Blackwell D. Conditional Expectation and Unbiased Sequential Estimation. Ann Math Stat. 1947;18(1):105–10. Search in Google Scholar

Doucet A, Murphy K, Berkeley UC. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. 1999. Search in Google Scholar

Murphy K SR. Rao-Blackwellised Particle Filtring for Dynamic Bayesian Networks. Springer New York. 2001;43(2):499–515. Search in Google Scholar

Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. Eighteenth Natl Conf Artif Intell Menlo Park. 2002;593–598. Search in Google Scholar

Montemerlo M, Thrun S, Siciliano B. FastSLAM:A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics. Springer. 2007;27. Search in Google Scholar

Michael M, Thrun S, Koller D, Wegbreit B. FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. IJCAI’03 Proc 18th Int Jt Conf Artif Intell. 2003;1151–6. Search in Google Scholar

Kim C, Sakthivel R, Chung WK. Unscented FastSLAM : A Robust Algorithm for the Simultaneous Localization and Mapping Problem. 2008. Search in Google Scholar

Eliazar A, Parr R. DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks. IJCAI Int Jt Conf Artif Intell. 2003;1135–42. Search in Google Scholar

Eliazar AI, Parr R. DP-SLAM 2.0. Dep Comput Sci Duke Univ North Carolina 27708. Search in Google Scholar

Zikos N, Petridis V. 6-DoF Low Dimensionality SLAM (L-SLAM). J Intell Robot Syst. 2015;79:55–72. Search in Google Scholar

Nie F, Zhang W, Yao Z, Shi Y, Li F, Huang Q. LCPF: A Particle Filter Lidar SLAM System with Loop Detection and Correction. IEEE Access. 2020;8:20401–12. Search in Google Scholar

Hua J, Cheng M. Improved UFastSLAM algorithm based on particle filter. IEEE 9th Jt Int Inf Technol Artif Intell Conf. 2020;(2693–2865):1050–5. Search in Google Scholar

Lin M, Member S, Canjun Yang, Li D. An Improved Transformed Unscented FastSLAM with Genetic Resampling. IEEE Trans Ind Electron. 2019;66(5):3583–94. Search in Google Scholar

Tang M, Chen Z, Yin F. An Improved Adaptive Unscented FastSLAM with Genetic Resampling. Int J Control Autom Syst. 2021;19(4):1677–90. Search in Google Scholar

Lu F, Milios E. Globally Consistent Range Scan Alignment for Environment Mapping. Auton Robots. 1997;4(4):333–49. Search in Google Scholar

Thrun S. The GraphSLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures. Int J Rob Res. 1998;25: 403–29. Search in Google Scholar

Grisetti G, Stachniss C, Grzonka S, Burgard W. A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. Robot Sci Syst. 2008;3:65–72. Search in Google Scholar

Frese U. Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping. Auton Robots. 2006;103–22. Search in Google Scholar

Grisetti G, Kümmerle R, Stachniss C, Frese U, Hertzberg C. Hierarchical optimization on manifolds for online 2D and 3D mapping. Proc - IEEE Int Conf Robot Autom. 2010;273–8. Search in Google Scholar

Kaess M, Johannsson H, Roberts R, Ila V, Leonard JJ, Dellaert F. ISAM2: Incremental smoothing and mapping using the Bayes tree. Int J Rob Res. 2012;31(2):216–35. Search in Google Scholar

Rainer K, Grisetti G, Hauke S, Kurt. K, Abstract—Many WB. g2o: A General Framework for Graph Optimization Rainer. IEEE Int Conf Robot Autom Shanghai Int Conf Cent. 2011;3607–13. Search in Google Scholar

Dellaert F. Factor Graphs and GTSAM. A hands-on Introd Tech Rep (Georgia Tech, Atlanta 2012) [Internet]:1–27. Available from: http://tinyurl.com/gtsam. Search in Google Scholar

Agarwal P, Tipaldi GD, Spinello L, Stachniss C, Burgard W. Robust map optimization using dynamic covariance scaling. Proc - IEEE Int Conf Robot Autom. 2013. Search in Google Scholar

Strasdat H, Davison AJ, Montiel JMM, Konolige K. Double window optimisation for constant time visual SLAM. Int Conf Comput Vis. 2011. Search in Google Scholar

M. Ruhnke R. Kümmerle G, Grisetti WB. Highly accurate 3D surface models by sparse surface adjustment. IEEE Int Conf Robot Autom. 2012;(10.1109/ICRA.2012.6225077). Search in Google Scholar

Stachniss C, Leonard JJ, Thrun S. Simultaneous Localization and Mapping. In: Multimedia Contents 1153 springer Handbook Robotics Part E/46. 2016;1153–75. Search in Google Scholar

Zhao L, Huang S, Dissanayake G. Linear SLAM: Linearising the SLAM problems using submap joining. Automatica. 2018;1–22. Search in Google Scholar

Holder M, Hellwig S, Winner H. Real-time pose graph SLAM based on radar. IEEE Intell Veh Symp. 2019. Search in Google Scholar

Youyang F, Qing W, Gaochao Y. Incremental 3-D pose graph optimization for SLAM algorithm without marginalization. Int J Adv Robot Syst. 2020;1–14. Search in Google Scholar

Fan T, Wang H, Rubenstein M, Murphey T. Cpl-slam: Efficient and certifiably correct planar graph-based slam using the complex number representation. IEEE Trans Robot. 2020;36(6):1719–37. Search in Google Scholar

Sun Z, Wu B, Xu CZ, Sarma SE, Yang J, Kong H. Frontier Detection and Reachability Analysis for Efficient 2D Graph-SLAM Based Active Exploration. IEEE/RSJ Int Conf Intell Robot Syst. 2020;2051–8. Search in Google Scholar

Pierzchała M, Giguère P, Astrup R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput Electron Agric. 2018;145:217–25. Search in Google Scholar

Press W, Keukolsky S WV and BF. Levenberg Marquardt Method. Numer Recipes C Art Sci Comput. 1992;542–54. Search in Google Scholar

Shum HY, Ke Q and ZZ. Efficient Bundle Adjustment with Virtual Key Frames: A Hierarchical Approach to Multi-frame Structure from Motion. IEEE Comput Soc Conf Comput Vis Pattern Recognition. 1999. Search in Google Scholar

Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge Univ Press. 2000;18. Search in Google Scholar

Melbouci K, Collette SN, Gay-Bellile V, Ait-Aider O, Carrier M, Dhome M. Bundle adjustment revisited for SLAM with RGBD sensors. Proc 14th IAPR Int Conf Mach Vis Appl MVA. 2015;166–9. Search in Google Scholar

Frost D, Prisacariu V, Murray D. Recovering Stable Scale in Monocular SLAM Using Object-Supplemented Bundle Adjustment. IEEE Trans Robot. 2018;34(3):1–11. Search in Google Scholar

Schops T, Sattler T, Pollefeys M. Bad slam: Bundle adjusted direct RGB-D slam. IEEE/CVF Conf Comput Vis Pattern Recognit. 2019;134–44. Search in Google Scholar

Zhao Y, Smith JS, Vela PA. Good Graph to Optimize: Cost-Effective, Budget-Aware Bundle Adjustment in Visual SLAM. Com-put Vis Pattern Recognit [Internet]. 2020;1–20. Available from: http://arxiv.org/abs/2008.10123 Search in Google Scholar

Wang K, Ma S, Ren F, Lu J. SBAS: Salient Bundle Adjustment for Visual SLAM. J LATEX Cl FILES.arxiv201211863v1[csRO]. 2015;14(8):1–11. Search in Google Scholar

Campos C, Elvira R, Rodriguez JJG, Montiel JMM, Tardos JD. ORB-SLAM3: An Accurate Open-Source Library for Visual. Visual-Inertial and Multimap SLAM. IEEE Trans Robot. 2021;37(6): 1874–90. Search in Google Scholar

Gonzalez M, Marchand E, Kacete A, Royan J. S3LAM: Structured Scene SLAM. Robotics [Internet]. 2022. Available from: http://arxiv.org/abs/2109.07339 Search in Google Scholar

Tanaka T, Sasagawa Y, Okatani T. Learning to Bundle-adjust: A Graph Network Approach to Faster Optimization of Bundle Adjustment for Vehicular SLAM. Proc IEEE Int Conf Comput Vis. 2021;6230–9. Search in Google Scholar

Rosten E, Drummond T. Machine Learning for High-Speed Corner Detection. Leonardis A, Bischof H, Pinz A Comput Vis – ECCV 2006ECCV 2006 Lect Notes Comput Sci Springer. Berlin. Heidelb. 2006;3951:430–43. Search in Google Scholar

Bay H, Ess A, Tuytelaars T, Gool L Van. Speeded-Up Robust Features ( SURF ). Comput Vis Image Underst. 2008;110(3): 346–59. Search in Google Scholar

Calonder M, Lepetit V, Strecha C, Fua P. BRIEF: Binary robust independent elementary features. ECCV 2010 Lect Notes Comput Sci Springer. Berlin. Heidelberg. 2010;6314:778–92. Search in Google Scholar

E. Rublee, V. Rabaud KK and GB. ORB: an efficient alternative to SIFT or SURF. Int Conf Comput Vision. Barcelona. Spain. 2011;2564–71. Search in Google Scholar

Harris C, Stephens M. A Combined Corner and Edge Detector. Proc 4th Alvey Vis Conf. 1988;147--151. Search in Google Scholar

Civera J, Lee SH. RGB-D Odometry and SLAM. Rosin, P, Lai, YK, Shao, L, Liu, Y RGB-D Image Anal Process Adv Comput Vis Pattern Recognition Springer. Cham. 2019;117–144. Search in Google Scholar

Davison AJ, Reid ID NDM, Stasse O. Monoslam: real-time single camera SLAM. Pattern Anal Mach Intell IEEE. 2007;29(6): 1052–67. Search in Google Scholar

Davison AJ. Real-time simultaneous localisation and mapping with a single camera. Proc Ninth IEEE Int Conf Comput Vision. Nice. Fr. 2003;2:1403–10. Search in Google Scholar

Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. 2007 6th IEEE ACM Int Symp Mix Augment Reality. ISMAR. 2007;225–34. Search in Google Scholar

Klein G, Murray D. Parallel tracking and mapping on a camera phone. th IEEE Int Symp Mix Augment Reality. Orlando FL. USA. 2009. 2009;83–6. Search in Google Scholar

Endres F, Hess J, Engelhard N, Sturm J DC and WB. An evaluation of the RGB-D SLAM system. IEEE Int Conf Robot Autom Saint Paul. MN. USA. 2012;3(c):1691–6. Search in Google Scholar

Mur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans Robot. 2015;31(5):1147–63. Search in Google Scholar

Tardos DG-L and JD. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Trans Robot. 28(5):1188–97. Search in Google Scholar

Strasdat H, Davison AJ, Montiel. JMM. Scale Drift-Aware Large Scale Monocular SLAM. Robot Sci Syst. 2010. Search in Google Scholar

Mei C, Sibley G, Newman P. Closing loops without places. IEEE/RSJ 2010 Int Conf Intell Robot Syst IROS 2010 - Conf Proc. 2010;3738–44. Search in Google Scholar

Mur-Artal R, Tardós JD. ORB-SLAM: Tracking and Mapping Recognizable Features. Conf Work Multi VIew Geom Robot - RSS 2014 [Internet]. 2014. Available from: http://vindelman.technion.ac.il/events/mvigro/MurArtal14rss_ws.pdf Search in Google Scholar

Mur-Artal R, Tardos JD. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Trans Robot. 2017;33(5):1255–62. Search in Google Scholar

Sumikura S, ShibuyaM KS. OpenVSLAM: A versatile visual SLAM framework. MM ’19 Proc 27th ACM Int Conf Multimedia. 2019;2292–5. Search in Google Scholar

Muñoz-Salinas R, Medina-Carnicer R. UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Comput Vis Pattern Recognit. 2019; Search in Google Scholar

Sun Q, Yuan J, Zhang X, Duan F. Plane-Edge-SLAM: Seamless Fusion of Planes and Edges for SLAM in Indoor Environments. IEEE Trans Autom Sci Eng. 2021;18(4):2061–75. Search in Google Scholar

Newcombe RA, Lovegrove SJ, Davison AJ. DTAM: Dense Tracking and Mapping in Real-Time. Int Conf Comput Vision, Barcelona, Spain. 2011;2320–7. Search in Google Scholar

J Engel JS and DC. Semi-Dense Visual Odometry for a Monocular Camera. IEEE Int Conf Comput Vision. Sydney. NSW. Aust. 2013;1449–56. Search in Google Scholar

Engel J, Sturm J, Cremers D. LSD-SLAM: Large-Scale Direct Monocular SLAM. Proc IEEE Int Conf Comput Vis. 2013;1449–56. Search in Google Scholar

Engel J, Stuckler J DC. Large-scale direct SLAM with Stereo Cameras. IEEE/RSJ Int Conf Intell Robot Syst (IROS). Hamburg Ger. 2015;1935–42. Search in Google Scholar

Engel J, Cremers, Daniel, Caruso D. Large-scale direct SLAM for omnidirectional cameras. IEEE/RSJ Int Conf Intell Robot Syst (IROS). Hamburg Ger. 2015;141–8. Search in Google Scholar

Forster C, Pizzoli M, Scaramuzza D. SVO : Fast Semi-Direct Monocular Visual Odometry. IEEE Int Conf Robot Autom (ICRA)Hong Kong. China. 2014;15–22. Search in Google Scholar

Engel J, Koltun V, Cremers D. Direct Sparse Odometry. IEEE Trans Pattern Anal Mach Intell. 2018;40(3):611–25. Search in Google Scholar

Gao X, Wang R, Demmel N, Cremers D. LDSO: Direct Sparse Odometry with Loop Closure. IEEE Int Conf Intell Robot Syst Spain. 2018;2198–204. Search in Google Scholar

Sheng C, Pan S, Gao W, Tan Y, Zhao T. Dynamic-DSO: Direct sparse odometry using objects semantic information for dynamic environments. Appl Sci. 2020;10(4):1–20. Search in Google Scholar

Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ et al. KinectFusion: Real-time dense surface mapping and tracking. 210th IEEE Int Symp Mix Augment Reality. Basel. Switzerland. 2011;127–36. Search in Google Scholar

Concha A, Civera J. RGBDTAM: A cost-effective and accurate RGB-D tracking and mapping system. IEEE Int Conf Intell Robot Syst Concha J Civera. RGBDTAM A cost-effective accurate RGB-D Track Mapp Syst 2017 IEEE/RSJ Int Conf Intell Robot Syst (IROS). Vancouver. 2017;6756–63. Search in Google Scholar

Fontán A JC and RT. Information-Driven Direct RGB-D Odometry. IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR). Seattle. WA. USA. 2020;4928–36. Search in Google Scholar

Ma L, Kerl C, Stückler J, Cremers D. CPA-SLAM: Consistent Plane-Model Alignment for Direct RGB-D SLAM. IEEE Int Conf Robot Autom (ICRA). Stock Sweden [Internet]. 2016;1:1285–91. Available from: https://pdfs.semanticscholar.org/d41a/4ab403d6c7611047f83f575cf4c16bfd5282.pdf Search in Google Scholar

Dai A, Nießner M, Zolloer M, Izadi S and C. BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration. IEEE Int Conf Progr Compr. 2022;1(1):19. Search in Google Scholar

Hsiao M, Westman E, Zhang G, Kaess M. Keyframe-based dense planar SLAM. IEEE Int Conf Robot Autom (ICRA). Singapore. 2017;5110–7. Search in Google Scholar

Dong X, Cheng L, Peng H, Li T. FSD-SLAM: a fast semi-direct SLAM algorithm. Complex Intell Syst [Internet]. 2022;8:1823–34. Available from: https://doi.org/10.1007/s40747-021-00323-y Search in Google Scholar

Bloesch M, Omari S, Hutter M, Siegwart R. Robust visual inertial odometry using a direct EKF-based approach. IEEE/RSJ Int Conf Intell Robot Syst (IROS). Hamburg Ger. 2015;298–304. Search in Google Scholar

Sun K, Mohta K, Pfrommer B, Watterson M, Liu S, Mulgaonkar Y, et al. Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight. IEEE Robot Autom Lett. 2018;3(2):965–72. Search in Google Scholar

Mourikis AI, Roumeliotis SI. A multi-state constraint Kalman filter for vision-aided inertial navigation. Proc 2007 IEEE Int Conf Robot Autom Rome. Italy. 2007;3565–72. Search in Google Scholar

Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-Based Visual-Inertial Odometry Using Nonlinear Optimization. Int J Rob Res. 2014;34(3):1–26. Search in Google Scholar

Schneider T, Dymczyk M, Fehr M, Egger K, Lynen S, Gilitschenski I et al. Maplab: An Open Framework for Research in Visual-Inertial Mapping and Localization. IEEE Robot Autom Lett. 2018;3(3):1418–25. Search in Google Scholar

Liu H, Chen M, Zhang G, Bao H, Bao Y. ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM. IEEE/CVF Conf Comput Vis Pattern Recognition. Salt Lake City. UT USA. 2018;1974–82. Search in Google Scholar

Forster C, Carlone L, Dellaert F, Scaramuzza D. On-Manifold Preintegration for Real-Time Visual-Inertial Odometry. Iin IEEE Trans Robot. 2017;33(1):1–20. Search in Google Scholar

Von Stumberg L, Usenko V, Cremers D. Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization. IEEE Int Conf Robot Autom (ICRA). Brisbane QLD. Aust. 2018;2510–7. Search in Google Scholar

Qin T, Li P, Shen S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans Robot. 2018;34(4):1004–20. Search in Google Scholar

Yang Z, Shen S. Monocular visual-inertial state estimation with online initialization and camera-IMU extrinsic calibration. IEEE Trans Autom Sci Eng. 2017;14(1):39–51. Search in Google Scholar

Mur-Artal R, Tardos JD. Visual-Inertial Monocular SLAM with Map Reuse. IEEE Robot Autom Lett. 2017;2(2):796–803. Search in Google Scholar

He Y, Zhao J, Guo Y, He W, Yuan K. PL-VIO: Tightly-coupled monocular visual–inertial odometry using point and line features. Sensors (Switzerland). 2018;18(4):1–25. Search in Google Scholar

Zheng F, Tsai G, Zhang Z, Liu S, Chu CC, Hu H. Trifo-VIO: Robust and Efficient Stereo Visual Inertial Odometry Using Points and Lines. IEEE/RSJ Int Conf Intell Robot Syst (IROS). Madrid Spain. 2018;3686–93. Search in Google Scholar

Li X, Li Y, Ornek EP, Lin J, Tombari F. Co-Planar Parametrization for Stereo-SLAM and Visual-Inertial Odometry. IEEE Robot Autom Lett. 2020;5(4):6972–9. Search in Google Scholar

Rosinol A, Sattler T, Pollefeys M, Carlone L. Incremental visual-inertial 3d mesh generation with structural regularities. Int Conf Robot Autom (ICRA). Montr QC. Canada. 2019;8220–6. Search in Google Scholar

Seiskari O, Rantalankila P, Kannala J, Ylilammi J, Rahtu E, Solin A. HybVIO: Pushing the Limits of Real-time Visual-inertial Odometry. IEEE/CVF Winter Conf Appl Comput Vis (WACV). Waikoloa HI, USA. 2022;287-296. Search in Google Scholar

Kaushik V, Jindgar K, Lall B. ADAADepth: Adapting data augmentation and attention for self-supervised monocular depth estimation. IEEE Robot Autom Lett. 2021;6(4):7791–8. Search in Google Scholar

Tateno K, Tombari F, Laina I NN. CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction. Comput Vis Pattern Recognit. 2017;6243–52. Search in Google Scholar

Bloesch M, Czarnowski J, Clark R, Leutenegger S AJD. CodeSLAM-Learning a Compact. Optimisable Representation for Dense Visual SLAM. 2018;2560–8. Available from: http://openaccess.thecvf.com/content_cvpr_2018/papers/Bloesch_CodeSLAM_--_Learning_CVPR_2018_paper.pdf Search in Google Scholar

Mohanty V, Agrawal S, Datta S, Ghosh A, Vishnu Dutt Sharma DC. DeepVO: A Deep Learning approach for Monocular Visual Odometry. 2016. Available from: http://arxiv.org/abs/1611.06069 Search in Google Scholar

Li R, Wang S, Long Z, Gu D. UnDeepVO: Monocular Visual Odometry Through Unsupervised Deep Learning. IEEE Int Conf Robot Autom (ICRA). Brisbane QLD. Aust. 2018;7286–91. Search in Google Scholar

Yang N, Von Stumberg L, Wang R, Cremers D. D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020;1278–89. Search in Google Scholar

Yin Z, Shi J. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose http:2018;1983–92. Available from: geonet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose http://arxiv.org/abs/1803.02276v2 Search in Google Scholar

Zhao C, Sun L, Purkait P, Duckett T, Stolkin R. Learning Monocular Visual Odometry with Dense 3D Mapping from Dense 3D Flow. IEEE/RSJ Int Conf Intell Robot Syst (IROS). Madrid Spain. 2018;6864–71. Search in Google Scholar

Zhou T, Brown M, Snavely N DGL. Unsupervised Learning of Depth and Ego-Motion from Video. CEEE Conf Comput Vis Pattern Recognit (CVPR), Honolulu, HI, USA [Internet]. 2017;6612–9. Available from: https://github.com/tinghuiz/SfMLearner.%0A2 Search in Google Scholar

Zagoruyko S, Komodakis N. Learning to Compare Image Patches via Convolutional Neural Networks Sergey. IEEE Conf Comput Vis Pattern Recognit (CVPR). Boston MA. USA. 2015;4353–61. Search in Google Scholar

G VKB, Carneiro G, Reid I. Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimizing Global Loss Functions. IEEE Conf Comput Vis Pattern Recognit (CVPR)IEEE Conf Comput Vis Pattern Recognit (CVPR). Las Vegas NV. USA [Internet]. 2016;5385–94. Available from: http://openaccess.thecvf.com/content_cvpr_2016/supplemental/G_Learning_Local_Image_2016_CVPR_supplemental.pdf Search in Google Scholar

Mayer N, Ilg E, Hausser P, Fischer P. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. IEEE Conf Comput Vis Pattern Recognit (CVPR). Las Vegas NV. USA. 2016;4040–8. Search in Google Scholar

Tankovich V, Häne C, Zhang Y, Kowdle A, Fanello S, Bouaziz S. HitNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching. IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR). Nashville TN. USA. 2021;14357–67. Search in Google Scholar

Huang PH, Matzen K, Kopf J, Ahuja N, Huang J Bin. DeepMVS: Learning Multi-view Stereopsis. IEEE/CVF Conf Comput Vis Pattern Recognition. Salt Lake City UT. USA. 2018;2821–30. Search in Google Scholar

Song X, Zhao X, Hu H, Fang L. EdgeStereo: A Context Integrated Residual Pyramid Network for Stereo Matching. Comput Vis – ACCV 2018 ACCV 2018 Lect Notes Comput Sci. 2018;arXiv:1803.05196. Search in Google Scholar

Shao C, Zhang C, Fang Z, Yang G. A Deep Learning-Based Semantic Filter for RANSAC-Based Fundamental Matrix Calculation and the ORB-SLAM System. IEEE Access. 2020;8:3212–23. Search in Google Scholar

Zhang W, Liu G, Tian G. A Coarse to Fine Indoor Visual Localization Method Using Environmental Semantic Information. IEEE Access. 2019;7:21963–70. Search in Google Scholar

Lin YF, Yang LJ, Yu CY, Peng CC, Huang DC. Object recognition and classification of 2D-SLAM using machine learning and deep learning techniques. Int Symp Comput Consum Control (IS3C). Taichung City. Taiwan. 2020;473–6. Search in Google Scholar

Wang S, Clark R, Wen H, Trigoni N. End-to-End, Sequence-to-Sequence Probabilistic Visual Odometry through Deep Neural Networks. Int J Robot Res 37 [Internet]. 2018;37:513–42. Available from: doi.org/10.1177/0278364917734298 Search in Google Scholar

Li J, Li Z, Feng Y, Liu Y, Shi G. Development of a Human-Robot Hybrid Intelligent System Based on Brain Teleoperation and Deep Learning SLAM. IEEE Trans Autom Sci Eng. 2019;16(4):1664–74. Search in Google Scholar

Lan E. A Novel Deep Learning Architecture By Integrating Visual Simultaneous Localization And Mapping (Vslam) Into Cnn For Real-Time Surgical Video Analysis. 19th Int Symp Biomed Imaging (ISBI). Kolkata. India. 2022;1–5. Search in Google Scholar

Hu S, Li D, Tang G, Xu X. A 3D semantic visual SLAM in dynamic scenes. 6th IEEE Int Conf Adv Robot Mechatronics (ICARM). Chongqing. China. 2021;522–8. Search in Google Scholar

Almalioglu Y, Saputra MRU, De Gusmao PPB, Markham A, Trigoni N. GANVO: Unsupervised deep monocular visual odometry and depth estimation with generative adversarial networks. Proc - IEEE Int Conf Robot Autom Conf Robot Autom (ICRA), Montr QC. Canada. 2019;5474–80. Search in Google Scholar

Ban X, Wang H, Chen T, Wang Y, Xiao Y. Monocular Visual Odometry based on depth and optical flow Using deep learning. IEEE Trans Instrum Meas. 2021;70:1–19. Search in Google Scholar

Liang HJ, Sanket NJ, Fermuller C, Aloimonos Y. SalientDSO: Bringing Attention to Direct Sparse Odometry. IEEE Trans Autom Sci Eng. 2019;16(4):1619–26. Search in Google Scholar

Tang J, Ericson L, Folkesson J, Jensfelt P. GCNv2: Efficient Correspondence Prediction for Real-Time SLAM. IEEE Robot Autom Lett. 2019;4(4):3505–10. Search in Google Scholar

Detone D, Malisiewicz T, Rabinovich A. SuperPoint: Self-supervised interest point detection and description. EEE/CVF Conf Comput Vis Pattern Recognit Work (CVPRW). Salt Lake City UT. USA. 2018;337–49. Search in Google Scholar

Kwang Moo Yi, Eduard Trulls, Vincent Lepetit PF. LIFT: Learned Invariant Feature Transform Kwang. Springer Int Publ AG 2016. Search in Google Scholar

Ganti P, Waslander S. Network uncertainty informed semantic feature selection for visual SLAM. 16th Conf Comput Robot Vis (CRV) Kingston QC. Canada. 2019;121–8. Search in Google Scholar

Gu X, Wang Y, Ma T. DBLD-SLAM: A Deep-Learning Visual SLAM System Based on Deep Binary Local Descriptor. Int Conf Control Autom Inf Sci (ICCAIS). Xi’an China. 2021;325–30. Search in Google Scholar

Krishnan KS, Sahin F. ORBDeepOdometry - A feature-based deep learning approach to monocular visual odometry. 14th Annu Conf Syst Syst Eng (SoSE). Anchorage AK. USA. 2019;296–301. Search in Google Scholar

Huang Z, Wang X, Huang L, Huang C, Wei Y, Liu W. CCNet: Criss-cross attention for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2019;603–12. Search in Google Scholar

Qin Z, Wang J, Lu Y. MonoGRNet: A General Framework for Monocular 3D Object Detection. IEEE Trans Pattern Anal Mach Intell. 2021;44(9):5170–84. Search in Google Scholar

Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham NT. VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem. Proc Thirty-First AAAI Conf Artif Intell. 2017;31(1):3995–4001. Search in Google Scholar

G. Costante, M. Mancini PV and TAC. "Exploring Representation Learning With CNNs for Frame-to-Frame Ego-Motion Estimation,. IEEE Robot Autom Lett. 2016;1:18-25. Search in Google Scholar

Gu X. DBLD-SLAM : A Deep-Learning Visual SLAM System Based on Deep Binary Local Descriptor. 2021;325–30. Search in Google Scholar

Vijayanarasimhan S, Ricco S, Schmid C. SfM-Net: Learning of Structure and Motion from Video. 2017. arXiv preprint arXiv:1704.07804. Search in Google Scholar

Konda K, Memisevic R. Learning visual odometry with a convolutional network. Proc of the 10th Int Conf Comput Vis Theory Appl. 2015;1:486–90. Search in Google Scholar

Wang S, Clark R, Wen H, Trigoni N. DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks. IEEE Int Conf Robot Autom (ICRA). Singapore. 2017; 2043–50. Search in Google Scholar

Clark R, Wang S, Markham A, Trigoni N, Wen H. VidLoc : A Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization. IEEE Conf Comput Vis Pattern Recognit (CVPR). Honolulu HI. USA. 2017;2652–60. Search in Google Scholar

Mahattansin N, Sukvichai K PB and TI. Improving Relocalization in Visual SLAM by using Object Detection. 9th Int Conf Electr Eng Comput Telecommun Inf Technol (ECTI-CON). Pr Khiri Khan. Thail. 2022;1–4. Search in Google Scholar

Li R, Liu Q, Gui J DG and HH. Indoor Relocalization in Challenging Environments With Dual-Stream Convolutional Neural Networks. IEEE Trans Autom Sci Eng. 2018;15(2):651–62. Search in Google Scholar

Dong S, Fan Q, Wang H, Shi J, Yi L, Funkhouser T, et al. Robust Neural Routing Through Space Partitions for Camera Relocalization in Dynamic Indoor Environments. IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR), Nashville, TN, USA. 2021;8540–50. Search in Google Scholar

Nakashima R, Seki A. SIR-Net : Scene-Independent End-to-End Trainable Visual Relocalizer Ryo Nakashima. Int Conf 3D Vis (3DV). Quebec City QC. Canada. 2019;472–81. Search in Google Scholar

Zhou L. Visual Relocalization using Long-Short Term Memory Fully Convolutional Network. IEEE Int Symp Mix Augment Real Adjun (ISMAR-Adjunct), Munich, Ger. 2018;258–63. Search in Google Scholar

Duong ND, Kacete A, Sodalie C, Oierre-Yves R JR. xyzNet: towards Machine learning camera relocalization by using a scene coordinate prediction network. IEEE Int Symp Mix Augment Real Adjun. 2018;2–7. Search in Google Scholar

Wu X, Tian X, Zhou J, Xu P, Chen J. Loop Closure Detection for Visual SLAM Based on SuperPoint Network. 2019 Chinese Autom Congr (CAC). Hangzhou. China. 2019;3789–93. Search in Google Scholar

Merrill N, Huang G. Lightweight Unsupervised Deep Loop Closure. Conf Robot Sci Syst . 2018;1–10. Search in Google Scholar

Xia Y, Li J, Qi L, Fan H. Loop Closure Detection for Visual SLAM Using PCANet Features. Int Jt Conf Neural Networks (IJCNN), Vancouver BC. Canada,. 2016;2274–81. Search in Google Scholar

Dai K, Cheng L, Yang R, Yan G. Loop Closure Detection Using KPCA and CNN for Visual SLAM. 40th Chinese Control Conf (CCC). Shanghai. China. 2021;8088–93. Search in Google Scholar

Xiong F, Ding Y, Yu M, Zhao W NZ and PR. A Lightweight sequence-based Unsupervised Loop Closure Detection. Int Jt Conf Neural Networks (IJCNN). Shenzhen. China. 2021;1–8. Search in Google Scholar

Huang L, Zhu M, Zhang M. Visual Loop Closure Detection Based on Lightweight Convolutional Neural Network and Product Quantization. IEEE 12th Int Conf Softw Eng Serv Sci (ICSESS). Beijing. China. 2021;122–6. Search in Google Scholar

Zhu M, Huang L. Fast and Robust Visual Loop Closure Detection with Convolutional Neural Network. IEEE 3rd Int Conf Front Technol Inf Comput (ICFTIC). Greenville SC. USA. 2021;3681–91. Search in Google Scholar

Ma J, Wang S, Zhang K, He Z, Huang J XM. Fast and Robust Loop-Closure Detection via Convolutional Auto-Encoder and Motion Consensus. IIEEE Trans Ind Informatics. 2022;18(6):3681–91. Search in Google Scholar

Cai S, Zhou D, Guo R, Zhou H, Peng K. Implementation of Hybrid Deep Learning Architecture on Loop-Closure Detection. 2018; 521–6. Search in Google Scholar

Liu Y, Xiang R, Zhang Q, Ren Z, Cheng J. Loop Closure Detection based on Improved Hybrid Deep Learning Architecture. IEEE Int Conf Ubiquitous Comput Commun Data Sci Comput Intell Smart Comput Netw Serv (SmartCNS). Shenyang. China. 2019;312–7. Search in Google Scholar

Shi X, Li L. Loop Closure Detection for Visual SLAM Systems Based on Convolutional Netural Network. IEEE 24th Int Conf Comput Sci Eng (CSE). Shenyang. China. 2021;123–9. Search in Google Scholar

Zhou Y, Wang Y, Poiesi F, Qin Q, Wan Y. Loop Closure Detection Using Local 3D Deep Descriptors. IEEE Robot Autom Lett. 2022;7(3):6335–42. Search in Google Scholar

Osman H, Darwish N, Member S, Bayoumi A. LoopNet: Where to Focus? Detecting Loop Closures in Dynamic Scenes. IEEE Robot Autom Lett. 2022;7(2):2031–8. Search in Google Scholar

Bhutta MUM, Sun Y, Lau D, Liu M, Member S. Why-So-Deep : Towards Boosting Previously Trained Models for Visual Place Recognition. 1824 IEEE Robot Autom Lett. 2022;7(2):1824–31. Search in Google Scholar

Gauglitz S, Sweeney C, Ventura J MT and TH. Live Tracking and Mapping from Both General and Rotation-Only Camera Motion. IEEE Int Symp Mix Augment Real (ISMAR). Atlanta GA. USA. 2012;13–22. Search in Google Scholar

Daniel HC, Kim K, Kannala J, Pulli K, Heikkilä J. DT-SLAM: Deferred triangulation for robust SLAM. 2nd Int Conf 3D Vision. Tokyo. Japan. 2014;609–16. Search in Google Scholar