Acceso abierto

Evaluation of Some Thermophysical Properties of SN500 Lubrication Oil Blended with SIO2, AL2O3 and TIO2 Nano-Additives, Using Fuzzy Logic


Cite

Wang B, Wang X, Lou W, Hao J. Thermal conductivity and rheological properties of graphite/oil nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2012;414:125-131. https://doi.org/10.1016/j.colsurfa.2012.08.008 Search in Google Scholar

Pico D F M, da Silva L R R, Mendoza O S H, Bandarra Filho E P. Experimental study on thermal and tribological performance of diamond nano-lubricants applied to a refrigeration system using R32. International Journal of Heat and Mass Transfer. 2020;152: 119493. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119493 Search in Google Scholar

Sankar E, Duraivelu K. The effect of SiO2-Al2O3-TiO2 nanoparticle additives on lubrication performance: Evaluation of wear and coefficient of friction. Materials Today: Proceedings. 2022;68:2387-2392. https://doi.org/10.1016/j.matpr.2022.09.107 Search in Google Scholar

Narayanasarma S, Kuzhiveli B T. Evaluation of the properties of POE/SiO2 nanolubricant for an energy-efficient refrigeration system–An experimental assessment. Powder Technology. 2019;356:1029-1044. https://doi.org/10.1016/j.powtec.2019.09.024 Search in Google Scholar

Narayanasarma S, Kuzhiveli BT. The effect of silica nanoparticle on thermal, chemical, corrosive, and the nature‐friendly properties of refrigerant compressor lubricants - A comparative study. Asia‐ Pacific Journal of Chemical Engineering. 2020;15(5):2551. https://doi.org/10.1002/apj.2551 Search in Google Scholar

Desai N, Nagaraj A M, Sabnis N. Analysis of thermo-physical properties of SAE20W40 engine oil by the addition of SiO2 nanoparticles. Materials Today: Proceedings. 2021;47:5646-5651. https://doi.org/10.1016/j.matpr.2021.03.688 Search in Google Scholar

Awad A M, Sukkar K A, Jaed D M. Development of an extremely efficient Iraqi nano-lubricating oil (Base-60) employing SiO2 and Al2O3 nanoparticles. In AIP Conference Proceedings. 2022;2443(1). https://doi.org/10.1063/5.0091951 Search in Google Scholar

Koppula S B, Sudheer N V V S. Experimental Studies and Comparison of Various Mechanical and Thermal Properties of Lubricants by Adding Nano Additives of Al2O3 and SiO2. In IOP Conference Series: Materials Science and Engineering. 2018;455(1):012056. Search in Google Scholar

https://doi.org/10.1088/1757-899X/455/1/012056 Search in Google Scholar

Raj R A, Samikannu R, Yahya A, Mosalaosi M. Investigation of survival/hazard rate of natural ester treated with Al2O3 nanoparticle for power transformer liquid dielectric. Energies. 2021;14(5):1510. https://doi.org/10.3390/en14051510 Search in Google Scholar

Gumus S, Ozcan H, Ozbey M, Topaloglu B. Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel. 2016;163:80-87. https://doi.org/10.1016/j.fuel.2015.09.048 Search in Google Scholar

Muthurathinama S G, Perumalb A V. Experimental study on effect of nano Al2O3 in physiochemical and tribological properties of vegetable oil sourced biolubricant blends. Digest journal of nanomaterials and biostructures. 2022;17(1):47-58. https://doi.org/10.15251/DJNB.2022.171.47 Search in Google Scholar

Sajith V, Mohiddeen M D, Sajanish M B, Sobhan C B. An investigation of the effect of addition of nanoparticles on the properties of lubricating oil. In Heat Transfer Summer Conference. 2007;42754:329-335. https://doi.org/10.1115/HT2007-32772 Search in Google Scholar

Awad A M, Sukkar K A, Jaed D M. Deep Understanding of the Mechanism and Thermophysical Properties of Prepared Nanofluids Lube Oil Stock-60 with Al2O3 NPs. Journal of Applied Sciences and Nanotechnology. 2022;2(3):37-51. http://doi.org/10.53293/jasn.2022.4394.1107 Search in Google Scholar

Hadi N J, Abd Al-Hussain R K. Physical properties improvement of the diesel engine lubricant oil reinforced nanomaterials. Journal of Mechanical and Energy Engineering. 2018;2(3):233-244. https://doi.org/10.30464/jmee.2018.2.3.233 Search in Google Scholar

Sukkar K A, Karamalluh A A, Jaber T N. Rheological and thermal properties of lubricating oil enhanced by the effect of CuO and TiO2 nano-additives. Al-Khwarizmi Engineering Journal. 2019;15(2):24-33. https://doi.org/10.22153/kej.2019.12.002 Search in Google Scholar

Kumar M, Afzal A, Ramis M K. Investigation of physicochemical and tribological properties of TiO2 nano-lubricant oil of different concentrations. TRIBOLOGIA-Finnish Journal of Tribology. 2017;35(3):6-15. https://journal.fi/tribologia/article/view/60703 Search in Google Scholar

Singh Y, Chaudhary V, Pal V. Friction and wear characteristics of the castor oil with TiO2 as an additive. Materials Today: Proceedings. 2020;26:2972-2976. https://doi.org/10.1016/j.matpr.2020.02.612 Search in Google Scholar

Deepak S N, Ram C N. Physio-chemical study of traditional lubricant SAE 20 W40 and virgin coconut oil using TiO2 nano-additives. Materials Today: Proceedings. 2021;42:1024-1029. https://doi.org/10.1016/j.matpr.2020.12.046 Search in Google Scholar

Ahmadi H, Rashidi A, Nouralishahi A, Mohtasebi S S. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. International Communications in Heat and Mass Transfer. 2013;46:142-147. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.003 Search in Google Scholar

Hafeez M, Krawczuk M, Shahzad H. An Overview of Heat Transfer Enhancement Based Upon Nanoparticles Influenced By Induced Magnetic Field with Slip Condition Via Finite Element Strategy. Acta Mechanica et Automatica. 2022;16(3):200-206. https://doi.org/10.2478/ama-2022-0024 Search in Google Scholar

Bouhamatou Z, Abedssemed F. Fuzzy Synergetic Control for Dynamic Car-Like Mobile Robot. Acta Mechanica et Automatica. 2022;16(1):48-57. https://doi.org/10.2478/ama-2022-0007 Search in Google Scholar

Kumar S, Jain S, Kumar H. Application of adaptive neuro-fuzzy inference system and response surface methodology in biodiesel synthesis from jatropha–algae oil and its performance and emission analysis on diesel engine coupled with generator. Energy. 2021;226:120428. https://doi.org/10.1016/j.energy.2021.120428 Search in Google Scholar

Kumar S, Jain S, Kumar H. Performance evaluation of adaptive neuro-fuzzy inference system and response surface methodology in modeling biodiesel synthesis from jatropha–algae oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2018;40(24):3000-3008. Search in Google Scholar

Kumar S, Bansal S. Performance evaluation of ANFIS and RSM in modeling biodiesel synthesis from soybean oil. Biosensors and Bioelectronics: X. 2023;15:100408. https://doi.org/10.1016/j.biosx.2023.100408 Search in Google Scholar

Kumar S. Estimation capabilities of biodiesel production from algae oil blend using adaptive neuro-fuzzy inference system (ANFIS). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020;42(7):909-917. https://doi.org/10.1080/15567036.2019.1602203 Search in Google Scholar

Shelton J, Saini N K, Hasan S M. Experimental study of the rheological behavior of TiO2- Al2O3/mineral oil hybrid nanofluids. Journal of Molecular Liquids. 2023;380:121688. https://doi.org/10.1016/j.molliq.2023.121688 Search in Google Scholar

Kia S, Khanmohammadi S, Jahangiri A. Experimental and numerical investigation on heat transfer and pressure drop of SiO2 and Al2O3 oil-based nanofluid characteristics through the different helical tubes under constant heat fluxes. International Journal of Thermal Sciences. 2023;185:108082. https://doi.org/10.1016/j.ijthermalsci.2022.108082 Search in Google Scholar

Sankar E, Duraivelu K. Simulation of optimal mix of SiO2-TiO2-Al2O3 nano additives for the minimal wear and coefficient of friction of lubricant using fuzzy logic. Jurnal Teknologi. 2023;86(1):125-133. https://doi.org/10.11113/jurnalteknologi.v86.20402 Search in Google Scholar

Duraivelu K. Digital transformation in manufacturing industry – a comprehensive insight. Journal of Materials Today : Proceedings. 2022;68(6):1825-1829. https://doi.org/10.1016/j.matpr.2022.07.409. Search in Google Scholar