Acceso abierto

Laboratory Testing and Modelling of Magnetorheological Elastomers in Tension Mode


Cite

Brancati R, Di Massa G, Pagano S, Santini S. A magneto-rheological elastomer vibration isolator for lightweight structures. Meccanica 2019;54:333–49. https://doi.org/10.1007/s11012-019-00951-2 Search in Google Scholar

Yu Y, Li Y, Li J. Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator. Meccanica 2015;50:2691–707. https://doi.org/10.1007/s11012-015-0179-z Search in Google Scholar

[Gutenko D. State of the art of soft robotic applications based on magneto-rheological materials. MATEC Web Conf 2020;322:01050. https://doi.org/10.1051/matecconf/202032201050 Search in Google Scholar

Hu T, Xuan S, Ding L, Gong X. Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater Des 2018;156:528–37. https://doi.org/10.1016/j.matdes.2018.07.024 Search in Google Scholar

Zhang G, Zhang J, Guo X, Zhang M, Liu M, Qiao Y, et al. Effects of graphene oxide on microstructure and mechanical properties of iso-tropic polydimethylsiloxane-based magnetorheological elastomers. Rheol Acta 2022;61:215–28. https://doi.org/10.1007/s00397-022-01329-0 Search in Google Scholar

Kashima S, Miyasaka F, Hirata K. Novel Soft Actuator Using Magnetorheological Elastomer. IEEE Trans Magn 2012;48:1649–52. https://doi.org/10.1109/TMAG.2011.2173669 Search in Google Scholar

Keip M-A, Rambausek M. Computational and analytical investigations of shape effects in the experimental characterization of magnetorheological elastomers. Int J Solids Struct 2017;121:1–20. https://doi.org/10.1016/j.ijsolstr.2017.04.012 Search in Google Scholar

Samal S, Blanco I. Investigation of Dispersion, Interfacial Adhesion of Isotropic and Anisotropic Filler in Polymer Composite. Appl Sci 2021;11:8561. https://doi.org/10.3390/app11188561 Search in Google Scholar

Vatandoost H, Rakheja S, Sedaghati R. Effects of iron particles’ volume fraction on compression mode properties of magnetorheological elastomers. J Magn Magn Mater 2021;522:167552. https://doi.org/10.1016/j.jmmm.2020.167552 Search in Google Scholar

Winger J, Schümann M, Kupka A, Odenbach S. Influence of the particle size on the magnetorheological effect of magnetorheological elastomers. J Magn Magn Mater 2019;481:176–82. https://doi.org/10.1016/j.jmmm.2019.03.027 Search in Google Scholar

Kaleta J, Królewicz M, Lewandowski D. Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices. Smart Mater Struct 2011;20: 085006. https://doi.org/10.1088/0964-1726/20/8/085006 Search in Google Scholar

Schubert G, Harrison P. Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations. J Magn Magn Mater 2016;404:205–14. https://doi.org/10.1016/j.jmmm.2015.12.003 Search in Google Scholar

Vatandoost H, Sedaghati R, Rakheja S. A novel methodology for accurate estimation of magnetic permeability of magnetorheological elastomers. J Magn Magn Mater 2022;560:169669. https://doi.org/10.1016/j.jmmm.2022.169669 Search in Google Scholar

Lian C, Lee K, An J, Lee C. Effect of stick-slip on magneto-rheological elastomer with a magnetic field. Friction 2017;5:383–91. https://doi.org/10.1007/s40544-017-0150-1 Search in Google Scholar

Johari MAF, Mazlan SA, Nasef MM, Ubaidillah U, Nordin NA, Aziz SAA, et al. Microstructural behavior of magnetorheological elastomer undergoing durability evaluation by stress relaxation. Sci Rep 2021;11:10936. https://doi.org/10.1038/s41598-021-90484-0 Search in Google Scholar

Li Y, Li J, Li W, Du H. A state-of-the-art review on magnetorheological elastomer devices. Smart Mater Struct 2014;23:123001. https://doi.org/10.1088/0964-1726/23/12/123001 Search in Google Scholar

Bastola AK, Hossain M. A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos Part B Eng 2020;200:108348.https://doi.org/10.1016/j.compositesb.2020.108348 Search in Google Scholar

Nguyen XB, Komatsuzaki T, Truong HT. Adaptive parameter identification of Bouc-wen hysteresis model for a vibration system using magnetorheological elastomer. Int J Mech Sci 2022;213:106848. https://doi.org/10.1016/j.ijmecsci.2021.106848 Search in Google Scholar

Wang P, Yang S, Liu Y, Zhao Y. Experimental Study and Fractional Derivative Model Prediction for Dynamic Viscoelasticity of Magnetorheological Elastomers. J Vib Eng Technol 2022;10:1865–81. https://doi.org/10.1007/s42417-022-00488-x Search in Google Scholar

Nguyen XB, Komatsuzaki T, Zhang N. A nonlinear magnetorheological elastomer model based on fractional viscoelasticity, magnetic dipole interactions, and adaptive smooth Coulomb friction. Mech Syst Signal Process 2020;141:106438. https://doi.org/10.1016/j.ymssp.2019.106438 Search in Google Scholar

Nedjar A, Aguib S, Djedid T, Nour A, Settet A, Tourab M. Analysis of the Dynamic Behavior of Magnetorheological Elastomer Composite: Elaboration and Identification of Rheological Properties. Silicon 2019;11:1287–93. https://doi.org/10.1007/s12633-018-9921-1 Search in Google Scholar

Wang B, Bustamante R, Kari L, Pang H, Gong X. Modelling the influence of magnetic fields to the viscoelastic behaviour of soft magnetorheological elastomers under finite strains. Int J Plast 2023;164:103578. https://doi.org/10.1016/j.ijplas.2023.103578 Search in Google Scholar

Metsch P, Kalina KA, Spieler C, Kästner M. A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput Mater Sci 2016;124:364–74. https://doi.org/10.1016/j.commatsci.2016.08.012. Search in Google Scholar

Kukla M, Górecki J, Malujda I, Talaśka K, Tarkowski P. The Determination of Mechanical Properties of Magnetorheological Elastomers (MREs). Procedia Eng 2017;177:324–30. https://doi.org/10.1016/j.proeng.2017.02.233 Search in Google Scholar

Janbaz M, Saeidi Googarchin H. Experimental and numerical analysis on magneto-hyper-viscoelastic constitutive responses of magnetorheological elastomers: A characterization procedure. Mech Mater 2021;154:103712. https://doi.org/10.1016/j.mechmat.2020.103712 Search in Google Scholar

Asadi Khanouki M, Sedaghati R, Hemmatian M. Adaptive dynamic moduli of magnetorheological elastomers: From experimental identification to microstructure-based modeling. Mater Sci Eng B Solid-State Mater Adv Technol 2021;267. https://doi.org/10.1016/j.mseb.2021.115083 Search in Google Scholar

Yu Y, Li J, Li Y, Li S, Li H, Wang W. Comparative Investigation of Phenomenological Modeling for Hysteresis Responses of Magnetorheological Elastomer Devices. Int J Mol Sci 2019;20:3216. https://doi.org/10.3390/ijms20133216 Search in Google Scholar

Yu Y, Hoshyar AN, Li H, Zhang G, Wang W. Nonlinear characterization of magnetorheological elastomer-based smart device for structural seismic mitigation. Int J Smart Nano Mater 2021;12:390–428. https://doi.org/10.1080/19475411.2021.1981477 Search in Google Scholar

Li W, Zhou Y, Tian T, Alici G. Creep and recovery behaviors of magnetorheological elastomers. Front Mech Eng China 2010;5:341–6. https://doi.org/10.1007/s11465-010-0096-8 Search in Google Scholar

Versa 3D scanning electron microscope, Technical documentation 2023. https://www.microscop.ru/uploads/VERSA3D.pdf (accessed April 17, 2023) Search in Google Scholar

Magnetometer LakeShore 7400 series, Technical documentation 2023. https://www.lakeshore.com/products/categories/overview/discontinued-products/discontinued-products/7400-series-vsm (accessed April 17, 2023) Search in Google Scholar

FEMM 4.2, Technical documentation. 2023. https://www.femm.info/wiki/Documentation/ (accessed April 17, 2023) Search in Google Scholar

Gaussmeter GM2, Technical documentation 2023. https://www.alphalabinc.com/product/gm2/ (accessed April 17, 2023). Search in Google Scholar

Linear actuator, LA30-43-000A, Technical documentation 2023. https://www.sensata.com/sites/default/files/a/sensata-voice-coil-actuator-linear-frameless-la30-43-000a-drawing.pdf (accessed April 17, 2023) Search in Google Scholar

9063 CompactRIO Controller, Technical documentation 2023. https://www.ni.com/pl-pl/support/model.crio-9063.html (accessed April 17, 2023). Search in Google Scholar

Linear encoder with sinus/cosinus output, LIKA SMS12, Technical documentation 2023. http://www.lika.pl/pliki_do_pobrania/CAT%20SMS12%20E.pdf (accessed April 17, 2023) Search in Google Scholar

Snamina J, Orkisz P. Active vibration reduction system with mass damper tuned using the sliding mode control algorithm. J Low Freq Noise Vib Act Control 2021;40:540–54. https://doi.org/10.1177/1461348420904257. Search in Google Scholar

Wang DH, Liao WH. Magnetorheological fluid dampers: a review of parametric modelling. Smart Mater Struct 2011;20:023001. https://doi.org/10.1088/0964-1726/20/2/023001 Search in Google Scholar