Acceso abierto

Experiments and Analysis of the Limit Stresses of a Magnetorheological Fluid


Cite

1. Khajehsaeid H, Alaghehband N, Bavil PK. On the yield stress of magnetorheological fluids. Chemical Engineering Science. 2022;256:117699.10.1016/j.ces.2022.117699 Search in Google Scholar

2. Kumar M, Kumar A, Bharti RK, Yadav HNS, Das M. A review on rheological properties of magnetorheological fluid for engineering components polishing. Materials Today: Proceedings. 2022;56(3):A6-A12.10.1016/j.matpr.2021.11.611 Search in Google Scholar

3. de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R. Magnetorheological fluids: a review. Soft Matter. 2011;7:3701-3710.10.1039/c0sm01221a Search in Google Scholar

4. Yang J, Yan H, Wang X, Hu Z. Enhanced yield stress of magnetorheological fluids with dimer acid. Materials Letters. 2016;167:27-29.10.1016/j.matlet.2015.12.098 Search in Google Scholar

5. Asiaban R, Khajehsaeid H, Ghobani E, Jabbari M. New magnetorheological fluid with high stability: Experimental study and constitutive modelling. Polymer Testing. 2020;8:106512.10.1016/j.polymertesting.2020.106512 Search in Google Scholar

6. Kubík M, Válek J, Žáček J, Jeniš F, Borin D, et al. Transient response of magnetorheological fluid on a rapid change of magnetic field in shear mode. Scientific Reports. 2022;12:10612.10.1038/s41598-022-14718-5922618335739216 Search in Google Scholar

7. Giorgetti A, Baldanzini N, Biasiotto M, Citti P. Design and testing of a MRF rotational damper for vehicle applications. Smart Materials and Structures. 2010;19(6):065006.10.1088/0964-1726/19/6/065006 Search in Google Scholar

8. Li DD, Keogh DF, Huang K, Chan QN, Yuen ACY, Menictas C et al. Modeling the response of magnetorheological fluid dampes under seismic conditions. Search in Google Scholar

9. Kubík M, Macháček O, Strecker Z, Roupec J, Mazůrek I. Design and testing of magnetorheological valve with fast force response time and great dynamic force range. Smart Materials and Structures. 2017;26(4):047002.10.1088/1361-665X/aa6066 Search in Google Scholar

10. Thakur MK, Sarkar C. Experimental and numerical study of magnetorheological clutch with sealing at larger radius disc. Defence Science Journal. 2020;70(6):575-582.10.14429/dsj.70.15778 Search in Google Scholar

11. Patel S, Upadhyay R, Patel D. Design optimization of magnetorheo-logical brake using structural parameter: evaluation and validation. IOP Conference Series: Materials Science and Engineering. 2020;992:012004.10.1088/1757-899X/992/1/012004 Search in Google Scholar

12. Horak W. Modeling of magnetorheological fluid in quasi-static squeeze flow mode. Smart Materials and Structures. 2018; 27: 065022.10.1088/1361-665X/aab7c7 Search in Google Scholar

13. Sapiński B, Gołdasz J. Development and performance evaluation of an MR squeeze-mode damper. Smart Materials and Structures. 2015;24(11):115007.10.1088/0964-1726/24/11/115007 Search in Google Scholar

14. Sapiński B, Rosół M, Jastrzębski Ł, Gołdasz J. Outlook on the dynamic behavior of an magnetorheological squeeze-mode damper prototype. Journal of Intelligent Material Systems and Structures. 2017;28(20):3025-3038.10.1177/1045389X17704919 Search in Google Scholar

15. Goncalves FD, Carlson JD. An alternate operation mode for MR fluids – Magnetic Gradient Pinch. Journal of Physics: Conference Series. 2009;149:012050. Search in Google Scholar

16. Gołdasz J, Sapiński B. Magnetostatic analysis of a pinch mode magnetorheological valve. Acta Mechanica et Automatica. 2017;11(3):229-232.10.1515/ama-2017-0035 Search in Google Scholar

17. Sapiński B, Horak W. Rheological properties of MR fluids recommended for use in shock absorbers. Acta Mechanica et Automatica. 2013;7(2):107-110.10.2478/ama-2013-0019 Search in Google Scholar

18. Quoc NV, Tuan LD, Hiep LD, Quoc HN, Choi SB. Material characterization of MR fluid on performance of MRF based brake. Frontiers in Materials. 2019; 6: 125.10.3389/fmats.2019.00125 Search in Google Scholar

19. Lokhande SB, Patil SR. Experimental characterization and evaluation of magnetorheological clutch for an electric two-wheeler application. Measurement. 2021;175:109150.10.1016/j.measurement.2021.109150 Search in Google Scholar

20. Strecker Z, Jeniš F, Kubík M, Macháček O, Choi SB. Novel approaches to the design of an ultra-fast magnetorheological valve for semi-active control. Materials. 2021;14(10):2500.10.3390/ma14102500815106534066066 Search in Google Scholar

21. Gołdasz J, Sapiński B, Kubík M, Macháček O, Bańkosz W et al. Review: a survey on configurations and performance of flow-mode MR valves. Applied Sciences. 2022;12(12):6260.10.3390/app12126260 Search in Google Scholar

22. Laun H.M, Gabril C, Kieburg Ch. Twin gap magneorheometer using ferromagnetic steel plates – Performance and validation. Journal of Rheology. 2010;54:327-354.10.1122/1.3302804 Search in Google Scholar

23. Wang K, Dong X, Li J, Shi K. Yield dimensionless magnetic effect and shear thinning for magnetorheological grease. Results in Physics. 2020;18:103328.10.1016/j.rinp.2020.103328 Search in Google Scholar

24. Han S, Choi J, Han HN, Kim S, Seo Y. Effect of particle shape anisotropy on the performance and stability of magnetorheological fluids. ACS Applied Electronic Materials. 2021;3:2526-2533.10.1021/acsaelm.1c00070 Search in Google Scholar

25. Jeon J, Koo S. Viscosity and dispersion state of magnetic suspensions. Journal of Magnetism and Magnetic Materials. 2012;324: 424-429.10.1016/j.jmmm.2011.08.025 Search in Google Scholar

26. Nagdeve L, Sidpara A, Jain VK, Ramkumar J. On the effect of relative size of magnetic particles and abrasive particles in MR fluid-based finishing process. Machining Science and Technology. 2018;22(3):493-506.10.1080/10910344.2017.1365899 Search in Google Scholar

27. Acharya S, Tak RSS, Singh SB, Kumar H. Characterization of magnetorheological brake utilizing synthesized and commercial fluids. Materials Today: Procedings. 2021;46(19):9419-9424. Search in Google Scholar

28. Mezger TG. The Rheology Handbook. 4th edition. Hanover: Vincentz Network GmbH & Co; 2014. Search in Google Scholar

29. Elsaady W, Oyadiji SO, Nasser A. A review on multi-physics numerical modelling in different applications of magnetorheological fluids. Journal of Intelligent Systems and Structures. 2020;31(16):1855-1897.10.1177/1045389X20935632 Search in Google Scholar

30. Chaudhuri A, Wereley NM, Radhakrishnan R, Choi SB. Rheological parameter estimation for a ferrous nanoparticle-based magnetorheo-logical fluid using genetic algorithms. Journal of Intelligent Material Systems and Structures. 2006;17(3):261-269.10.1177/1045389X06063038 Search in Google Scholar

31. Laun HM, Gabriel C, Kieburg C. Magnetorheological fluid (MRF) in oscillatory shear and parametrization with regard to MR device properties. Journal of Physics: Conference Series. 2009;149:012067. Search in Google Scholar

32. Wereley NM, Chaudhuri A, Yoo J-H, John S, Kotha S, Suggs A et al. Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. Journal of Intelligent Material Systems and Structures. 2006;17(5):393-401.10.1177/1045389X06056953 Search in Google Scholar

33. LORD Corporation. MRF-132DG Magneto-Rheological Fluid. DS7015 datasheet [Internet]. 2011 Nov [cited 2022 Jul 15]. Available from: https://lordfulfillment.com/pdf/44/DS7015_MRF-132DGMRFluid.pdf Search in Google Scholar

34. Barnes HA. The yield stress – a review or ‘παντα ρει’—everything flows? Journal of Non-Newtonian Fluid Mechanics. 1999;81 (1-2):133-178.10.1016/S0377-0257(98)00094-9 Search in Google Scholar

35. Ichwan B, Mazlan SA, Imaduddin F, Ubaidillah, Zamzuri H. Performance simulation on a magnetorheological valve module using three different commercial magnetorheological fluid. Advanced Materials Research. 2015;1123:35-41.10.4028/www.scientific.net/AMR.1123.35 Search in Google Scholar

36. Szakal RA, Susan-Resiga D, Muntean S, Ladislau V. Magnetorheo-logical fluids flow modelling used in a magnetorheological brake configuration. 2019 International Conference on ENERGY and ENVIRONMENT (CIEM). 2019:403-407. Search in Google Scholar

37. Szakal RA, Mecea D, Bosioc AI, Borbáth I, Muntean S. Design and testing a magneto-rheological brake with cylindrical configuration. Proceeding of the Romanian Academy – Series A: Mathematics, Physics, Technical Sciences, Information Science. 2021;22(2/2021):189-197. Search in Google Scholar