1. bookVolumen 16 (2022): Edición 4 (December 2022)
Detalles de la revista
Formato
Revista
eISSN
2300-5319
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Numerical Criterion for the Duration of Non-Chaotic Transients in ODEs

Publicado en línea: 15 Nov 2022
Volumen & Edición: Volumen 16 (2022) - Edición 4 (December 2022)
Páginas: 388 - 392
Recibido: 10 Aug 2022
Aceptado: 10 Oct 2022
Detalles de la revista
Formato
Revista
eISSN
2300-5319
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Peitgen H., Jurgens H., Saupe D. Pascal’s Triangle: Cellular Automata and Attractors. Chaos and Fractals. Springer New York NY. 2004; 377-422. https://doi.org/10.1007/0-387-21823-8_910.1007/0-387-21823-8_9 Search in Google Scholar

2. Kravtsov S., Sugiyama N., Tsonis A. Transient behavior in the Lorenz model. Nonlinear Processes in Geophysics Discussions. 2014; 1.2: 1905-1917. https://doi.org/10.5194/npgd-1-1905-201410.5194/npgd-1-1905-2014 Search in Google Scholar

3. Gear C. Numerical initial value problems in ordinary differential equations. Prentice-Hall series in automatic computation. 1971. Search in Google Scholar

4. Press W. et al. Numerical recipes in C++. The art of scientific computing’ 2007; 2: 1002. Search in Google Scholar

5. Wu D. Wang Z. A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach. Computer physics communications’ 2006; 174.6: 447-463. https://doi.org/10.1016/j.cpc.2005.09.00610.1016/j.cpc.2005.09.006 Search in Google Scholar

6. Wang Z. P-stable linear symmetric multistep methods for periodic initial-value problems. Computer Physics Communications. 2005; 171.3: 162-174. https://doi.org/10.1016/j.cpc.2005.05.00410.1016/j.cpc.2005.05.004 Search in Google Scholar

7. Jordan D., Smith P. Nonlinear ordinary differential equations: an introduction for scientists and engineers. OUP Oxford. 2007; 8. Search in Google Scholar

8. Alghassab M. et al. Nonlinear control of chaotic forced Duffing and van der pol oscillators. International Journal of Modern Nonlinear Theory and Application. 2017; 6.: 26-31. https://doi.org/10.4236/ijmnta.2017.6100310.4236/ijmnta.2017.61003 Search in Google Scholar

9. Bellman R., Bentsman J., Meerkov S. Vibrational control of nonlinear systems: Vibrational controllability and transient behavior. IEEE Transactions on Automatic Control. 1986; 31.8: 717-724. https://doi.org/10.1109/TAC.1986.110438310.1109/TAC.1986.1104383 Search in Google Scholar

10. Szczebiot R. Jordan A. Criterion for transient behaviour in a nonlinear Duffing oscillator. Przegląd Elektrotechniczny. 2019; 95. https://doi.org/10.15199/48.2019.04.3610.15199/48.2019.04.36 Search in Google Scholar

11. Tel T. The joy of transient chaos. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2015; 25.9: 097619. https://doi.org/10.1063/1.491728710.1063/1.491728726428572 Search in Google Scholar

12. Kovacic, I., Brennan, M. The Duffing equation: nonlinear oscillators and their behaviour. John Wiley & Sons. 2011. https://doi.org/10.1002/978047097785910.1002/9780470977859 Search in Google Scholar

13. Zumdieck A. et al. Long chaotic transients in complex networks. Physical Review Letters. 2004; 93.24: 244103. https://doi.org/10.1103/PhysRevLett.93.24410310.1103/PhysRevLett.93.24410315697818 Search in Google Scholar

14. Tel T., Lai Y. Chaotic transients in spatially extended systems. Physics Reports. 2008; 460.6: 245-275. https://doi.org/10.1016/j.physrep.2008.01.00110.1016/j.physrep.2008.01.001 Search in Google Scholar

15. Cooper M., Heidlauf P., Sands T. Controlling chaos-Forced van der pol equation. Mathematics. 2017; 5.4: 70. https://doi.org/10.3390/math504007010.3390/math5040070 Search in Google Scholar

16. Sabarathinam S., Volos Ch., Thamilmara K. Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dynamics’ 2017; 87.1: 37-49. https://doi.org/10.1007/s11071-016-3022-810.1007/s11071-016-3022-8 Search in Google Scholar

17. Vahedi H., Gharehpetian G., Karrari M. Application of duffing oscillators for passive islanding detection of inverter-based distributed generation units. IEEE Transactions on Power Delivery’ 2012; 27.4: 1973-1983. https://doi.org/10.1109/TPWRD.2012.221225110.1109/TPWRD.2012.2212251 Search in Google Scholar

18. Tsatsos M. The Van der Pol equation. arXiv preprint arXiv. 2008; 0803.1658. https://arxiv.org/ftp/arxiv/papers/0803/0803.1658.pdf Search in Google Scholar

19. Bobtsov A. et al. Adaptive observer design for a chaotic Duffing system. International Journal of Robust and Nonlinear Control. IFAC-Affiliated Journal. 2009; 19.7: 829-841. https://doi.org/10.1002/rnc.135410.1002/rnc.1354 Search in Google Scholar

20. Tang Y. Distributed optimization for a class of high-order nonlinear multiagent systems with unknown dynamics. International Journal of Robust and Nonlinear Control. 2018; 28.17: 5545-5556. https://doi.org/10.1002/rnc.433010.1002/rnc.4330 Search in Google Scholar

21. Zduniak B., Bodnar M., Forys U. A modified van der Pol equation with delay in a description of the heart action. International Journal of Applied Mathematics and Computer Science’ 2014; 24.4. https://doi.org/10.2478/amcs-2014-006310.2478/amcs-2014-0063 Search in Google Scholar

22. Kimiaeifar A. et al. Analytical solution for Van der Pol–Duffing oscillators. Chaos, Solitons & Fractals. 2009; 42.5: 2660-2666. https://doi.org/10.1016/j.chaos.2009.03.14510.1016/j.chaos.2009.03.145 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo