1. bookVolumen 16 (2022): Edición 4 (December 2022)
Detalles de la revista
Formato
Revista
eISSN
2300-5319
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

A Method of Increasing the Accuracy of Low-Stiffness Shafts: Single-Pass Traverse Grinding Without Steady Rests

Publicado en línea: 01 Nov 2022
Volumen & Edición: Volumen 16 (2022) - Edición 4 (December 2022)
Páginas: 357 - 364
Recibido: 08 Jun 2022
Aceptado: 12 Aug 2022
Detalles de la revista
Formato
Revista
eISSN
2300-5319
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Han X., Wu T. Analysis of acoustic emission in precision and high-efficiency grinding technology. Int J Adv Manuf Tech. 2013; 67(9):1997-2006. Search in Google Scholar

2. Oczoś K. Characteristics of development trends in grinding with grinding wheels. Materials of XXIII Scientific Abrasive Conference. 2000; 13-62. Search in Google Scholar

3. Kopac J., Krajnik P. High-performance grinding – A review..J Mater Process Tech. 2006;175:278-284.10.1016/j.jmatprotec.2005.04.010 Search in Google Scholar

4. Klocke F., Barth S., Mattfeld P. High Performance Grinding. Procedia CIRP. 2016;46:266-271.10.1016/j.procir.2016.04.067 Search in Google Scholar

5. Klocke F., Soo L., Karpuschewski B., Webster J., Novovic D., Elfizy A., Axinte D., Tönissen S. Abrasive machining of advanced aerospace alloys and composites. CIRP Annals – Manufacturing Technology. 2015;64(2):581-604.10.1016/j.cirp.2015.05.004 Search in Google Scholar

6. Kalchenko V., Pogiba N., Kalchenko D. Determination of Cutting Force Components in Creep-Feed Grinding of Revolution Surfaces Using an Oriented Elbor Wheel. J Superhard Mater. 2012;34(2): 118-130.10.3103/S1063457612020062 Search in Google Scholar

7. Żyłka Ł., Babiarz R. Dressing process in the grinding of aerospace blade root. J Mech Sci Technol. 2017;31(9): 4411-4417.10.1007/s12206-017-0841-6 Search in Google Scholar

8. Webster J., Tricard M. Innovations in Abrasive Products for Precision Grinding. CIRP Annals. 2004;53(2):597-617.10.1016/S0007-8506(07)60031-6 Search in Google Scholar

9. Nadolny K. A review on single-pass grinding processes.. J Cent South Univ. 2013;20:1502-1509.10.1007/s11771-013-1641-5 Search in Google Scholar

10. Burek J., Sułkowicz P., Babiarz R., Płodzień M. Cylindrical Continuous Path Controlled Grinding with Profile Grinding Wheel Type 1F1. Reszow Uniwersity of Technology Scientific Letters, Mechanics. 2017;89(4):449-456.10.7862/rm.2017.41 Search in Google Scholar

11. Marinescu I. D., Hitchiner M. P., Uhlmann E., Rowe W. B., Inasaki I. Handbook of Machining with Grinding Wheels. CRC Press,. 2016.10.1201/b19462 Search in Google Scholar

12. Urbicain G., Olvera D., Fernandez A., Rodriguez L., Tabernero L.N. Stability Lobes in Turning of Low Rigidity Components. Adv Mat Res. 2012;498:576-585. Search in Google Scholar

13. Porzycki J., Batsch A., Oczoś K. A two-parameter adaptive control system for the traverse cylindrical grinding process. IFAC Proceedings Volumes. 1980;13(10):151-154.10.1016/S1474-6670(17)64514-2 Search in Google Scholar

14. Amitay G. Malkin S., Koren Y. Adaptive Control Optimization of Grinding.. J Eng Ind. 1981;103(1):103-108.10.1115/1.3184449 Search in Google Scholar

15. Gao Y., Jones B. Control of the traverse grinding process using dynamically active workpiece steadies.. Int J Mach Tool Manu. 1993;33(2):231-244.10.1016/0890-6955(93)90076-7 Search in Google Scholar

16. Park C., Kim D., Lee S. Shape prediction during the cylindrical traverse grinding of a slender workpiece. J Mater Process Tech. 1999;88:23-32.10.1016/S0924-0136(98)00363-X Search in Google Scholar

17. Choi H., Lee S. Machining error compensation of external cylindrical grinding using thermally actuated rest. Mechatronics. 2002;12: 643-656.10.1016/S0957-4158(01)00026-5 Search in Google Scholar

18. Kruszyński B., Lajmert W. An intelligent system for online optimization of the cylindrical traverse grinding operation. Int J Eng Manu. 2006;3:355-363.10.1243/095440506X77607 Search in Google Scholar

19. Świć A., Taranenko W. Adaptive control of machining accuracy of axial – symmetrical lowrigidity parts in elastic – deformable state. Maintenance and Reliability. 2012;3:215-221. Search in Google Scholar

20. Parenti P., Bianchi G. Model-based adaptive process control for surface finish improvement in traverse grinding. Mechatronics. 2016;36:97-111.10.1016/j.mechatronics.2016.04.001 Search in Google Scholar

21. Saljẻ E., Mushardt H. Aufbau einer Optimierregelung für einen mehrstufigen Schleifprozess. Werkstattstechnik. 1975;65:335-338. Search in Google Scholar

22. Burek J. Stabilization of normal grinding force component in multistage plunge grinding. PhD thesis (Rzeszow University of Technology). 1985. Search in Google Scholar

23. Onishi T., Kodani T., Ohashi K., Sakakura M., Tsukamoto S. Study on the Shape Error in the Cylindrical Traverse Grinding of a Work-piece with High Aspect Ratio. Adv Mat Res. 2014;10(17):78-81. Search in Google Scholar

24. Burek J., Sułkowicz P., Babiarz R. Cylindricity error measurement and compensation in traverse grinding of low-stiffness shafts. Mechanik. 2018;91(11):970-972.10.17814/mechanik.2018.11.172 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo