1. bookVolumen 16 (2022): Edición 4 (December 2022)
Detalles de la revista
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Acceso abierto

The Use of Thermography to Determine the Compaction of a Saddle-Shaped Briquette Produced in an Innovative Roller Press Compaction Unit

Publicado en línea: 01 Nov 2022
Volumen & Edición: Volumen 16 (2022) - Edición 4 (December 2022)
Páginas: 340 - 346
Recibido: 25 Jun 2022
Aceptado: 12 Sep 2022
Detalles de la revista
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año

1. Świderski W, Miszczak M, Szabra D. Zastosowanie pomiarów termowizyjnych w badaniach dysz grafitowych stosowanych układach napędowych przeciwlotniczych pocisków rakietowych krótkiego zasięgu. Biuletyn Wojskowej Akademii Technicznej. 2008;57(3): 285-293. Search in Google Scholar

2. Duchaczek A, Mańko Z. Próba zastosowania termowizji w badaniach zmęczeniowych dźwigarów stalowych w mostach wojskowych. Zeszyty Naukowe / Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki. 2009;(3): 125-135. Search in Google Scholar

3. Al-Habaibeh A, Hawas A, Hamadeh L, Medjdoub B, Marsh J, Sen A. Enhancing the sustainability and energy conservation in heritage buildings: The case of Nottingham Playhouse. Frontiers of Architectural Research. 2022;11(1): 142-160. https://doi.org/10.1016/j.foar.2021.09.00110.1016/j.foar.2021.09.001 Search in Google Scholar

4. Silva GP, Batista PIB, Povóas YV. The usage of infrared thermography to study thermal performance of walls: a bibliographic review. Revista ALCONPAT. 2019;9(2): 117-129. https://doi.org/10.21041/ra.v9i2.34110.21041/ra.v9i2.341 Search in Google Scholar

5. Tomita K, Chew MYL. A Review of Infrared Thermography for Delamination Detection on Infrastructures and Buildings. Sensors. 2022;22(2): 423. https://doi.org/10.3390/s2202042310.3390/s22020423877935935062389 Search in Google Scholar

6. Branco JHL, Branco RLL, Siqueira TC, de Souza LC, Dalago KMS. Andrade A. Clinical applicability of infrared thermography in rheumatic diseases: A systematic review. Journal of Thermal Biology, 2022, 104, 103172 https://doi.org/10.1016/j.jtherbio.2021.10317210.1016/j.jtherbio.2021.10317235180959 Search in Google Scholar

7. Kaźmierska B, Sobiech KA, Demczuk-Włodarczyk E, Chwałczyńska A. Thermovision assessment of temperature changes in selected body areas after short-wave diathermy treatment. Journal of Thermal Analysis and Calorimetry. 2021: 1-8 https://doi.org/10.1007/s10973-021-11136-z10.1007/s10973-021-11136-z Search in Google Scholar

8. Damijan Z, Uhryński A. Systemic cryotherapy influence of low temperatures on selected physiological parameters. Acta Physica Polonica A 2012;121(1-A): 38-41. http://dx.doi.org/10.12693%2FAPhysPolA.121.A-3810.12693/APhysPolA.121.A-38 Search in Google Scholar

9. Damijan Z, Uhryński A. The effect of general low frequency vibration on energy balance of a human being. Acta Physica Polonica A. 2013;123(6): 970-973. doi: 10.12693/APhysPolA.123.97010.12693/APhysPolA.123.970 Search in Google Scholar

10. Damijan Z, Uhryński A. The influence of driver’s working environment on thermical changes of their organism. Acta Physica Polonica A. 2010;118(1): 35-40. doi: 10.12693/APhysPolA.118.3510.12693/APhysPolA.118.35 Search in Google Scholar

11. Molenda J, Charchalis A. Using thermovision for temperature measurements during turning process. Journal of KONES Powertrain and Transport. 2018;25(4): 293-298. https://doi.org/10.5604/01.3001.0012.4803 Search in Google Scholar

12. Bartoszuk M. Thermovision measurements of temperature on the tool-chip upper side in turning of aisi 321 steel. Technical Sciences. 2020;23(1): 69-80. https://doi.org/10.31648/ts.517710.31648/ts.5177 Search in Google Scholar

13. Piecuch G, Madera M, Żabiński T. Diagnostics of welding process based on thermovision images using convolutional neural network. IOP Conf. Series: Materials Science and Engineering. 2019;710(1): 012042. doi: 10.1088/1757-899X/710/1/01204210.1088/1757-899X/710/1/012042 Search in Google Scholar

14. Nowacki J, Wypych A. Application of thermovision method to welding thermal cycle analysis. The Journal of Achievements in Materials and Manufacturing Engineering. 2010;40(2): 131-137. Search in Google Scholar

15. Struzikiewicz G, Sioma A. Application of infrared and high-speed cameras in diagnostics of CNC milling machines: case study. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. 2019;11176: 111760c. https://doi.org/10.1117/12.253667910.1117/12.2536679 Search in Google Scholar

16. Fidal M. Identification of machine technical state on the basis of fourier analysis of infrared images. Diagnostics And Structural Health Monitoring. 2011;2(58): 25-30. Search in Google Scholar

17. Michalik P, Zajac J. Use of thermovision for monitoring temperature conveyor belt of pipe conveyor. Applied Mechanics and Materials. 2014;683: 238-42. https://doi.org/10.4028/www.scientific.net/AMM.683.23810.4028/www.scientific.net/AMM.683.238 Search in Google Scholar

18. Baranowski P, Damaziak K, Malachowski J, Mazurkiewicz L, Polakowski H, Piatkowski T, Kastek M. Thermovision in the validation process of numerical simulation of braking. Metrology and Measurement Systems. 2014;21(2): 329-340. http://dx.doi.org/10.2478%2Fmms-2014-002810.2478/mms-2014-0028 Search in Google Scholar

19. Jakubek B, Grochalski K, Rukat W, Sokol H. Thermovision measurements of rolling bearings. Measurement. 2022;189: 110512. https://doi.org/10.1016/j.measurement.2021.11051210.1016/j.measurement.2021.110512 Search in Google Scholar

20. Janura R, Gutten M, Korenciak D, Sebok M. Thermal processes in materials of oil transformers. Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering (DEMISEE). 2016: 81-84. doi: 10.1109/DEMISEE.2016.753047010.1109/DEMISEE.2016.7530470 Search in Google Scholar

21. Simko M, Chupac M, Gutten M. Thermovision measurements on electric machines. International Conference on Diagnostics in Electrical Engineering (Diagnostika). 2018: 1-4. doi: 10.1109/DIAGNOSTIKA.2018.852603310.1109/DIAGNOSTIKA.2018.8526033 Search in Google Scholar

22. Wyleciał T, Urbaniak D. Research on thermal contact resistance in a bed of steel square bars using thermovision. Acta Physica Polonica A. 2019;135(2): 263-269. doi: 10.12693/APhysPolA.135.26310.12693/APhysPolA.135.263 Search in Google Scholar

23. Sharkeev Y, Vavilov V, Skripnyak V.A, Belyavskaya O, Legostaeva E, Kozulin A, Chulkov A, Sorokoletov A, Skripnyak VV, Eroshenko A, Kuimova M. Analyzing the deformation and fracture of bioinert titanium, zirconium and niobium alloys in different structural states by the use of infrared thermography. Metals. 2018; 8(9): 703. https://doi.org/10.3390/met809070310.3390/met8090703 Search in Google Scholar

24. Heinz D, Halek B, Krešák J, Peterka P, Fedorko G Molnár V. Methodology of measurement of steel ropes by infrared technology. Engineering Failure Analysis. 2022;133: 105978. https://doi.org/10.1016/j.engfailanal.2021.10597810.1016/j.engfailanal.2021.105978 Search in Google Scholar

25. Pawlak A, Rozanski A, Galeski A. Thermovision studies of plastic deformation and cavitation in polypropylene. Mechanics of Materials. 2013;67: 104-118. https://doi.org/10.1016/j.mechmat.2013.07.01610.1016/j.mechmat.2013.07.016 Search in Google Scholar

26. Koštial P, Ružiak I, Jonšta Z, Kopal I, Hrehuš R, Kršková J. Experimental method for complex thermo-mechanical material analysis. International Journal of Thermophysics. 2010;31: 630–636. https://doi.org/10.1007/s10765-010-0745-510.1007/s10765-010-0745-5 Search in Google Scholar

27. Pieklak K, Mikołajczyk Z. Strength tests of 3D warp-knitted composites with the use of the thermovision technique. Fibres & Textiles in Eastern Europe. 2011;19(5 (88)): 100-105. Search in Google Scholar

28. Grochalski K, Peta K. Diagnostic methods of detecting defects within the material with the use of active infrared thermovision. Archives of Mechanical Technology and Materials. 2017:37(1): 41-44. doi: 10.1515/amtm-2017-000610.1515/amtm-2017-0006 Search in Google Scholar

29. Bazaleev NI, Bryukhovetskij VV, Klepikov VF, Litvinenko VV. Thermovision acoustic thermography construction materials defectos-copy. Voprosy Atomnoj Nauki i Tekhniki. Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie. 2011;2(97/72): 178-185. Search in Google Scholar

30. Wierzbicki Ł, Stabik J, Wróbel G, Szczepanik M. Efficiency of two non-destructive testing methods to detect defects in polymeric materials. Journal of Achievements in Materials and Manufacturing Engineering 2010;38(2): 163-170. Search in Google Scholar

31. Durka T, Stefanidis G, Van Gerven T, Stankiewicz A, On the accuracy and reproducibility of fiber optic (FO) and infrared (IR) temperature measurements of solid materials in microwave applications. Measurement Science and Technology. 2010;21(4): 045108. http://dx.doi.org/10.1088/0957-0233/21/4/04510810.1088/0957-0233/21/4/045108 Search in Google Scholar

32. Lahiri BB, Bagavathiappan S, Reshmi PR, Philip J, Jayakumar T, Raj B. Quantification of defects in composites and rubber materials using active thermography. Infrared Physics & Technology. 2012;55(2-3): 191-199. https://doi.org/10.1016/j.infrared.2012.01.00110.1016/j.infrared.2012.01.001 Search in Google Scholar

33. Różański L, Ziopaja K. Detection of material defects in reinforced concrete slab using active thermography. Measurement Automation Monitoring. 2017;63(3): 82-85. Search in Google Scholar

34. Miękina W, Madura H. Podstawy teoretyczne pomiarów termowizyjnych. Pomiary termowizyjne w praktyce. Agenda Wydawnicza Paku. 2004: 10-26. Search in Google Scholar

35. Lepiarczyk D, Uhryński A. Thermo-Vision Analysis of Iron Foundry Production Process Concerning Secondary Usage of Heat. Polish Journal of Environmental Studies. 2014;23(3): 1017-1023. Search in Google Scholar

36. Żaba K, Nowak S, Kwiatkowski M, Nowosielski M, Kita P, Sioma A. Application of non-destructive methods to quality assessment of pattern assembly and ceramic mould in the investment casting elements of aircraft engines. Archives of Metallurgy and Materials. 2014;59(4): 1517-1525. doi: 10.2478/amm-2014-025010.2478/amm-2014-0250 Search in Google Scholar

37. Tor-Świątek A, Samujło B. Use of thermo vision research to analyze the thermal stability of microcellular extrusion process of poly(vinyl chloride). Maintenance and Reliability. 2013;15(1): 58–61. Search in Google Scholar

38. Hynek M, Votapek P. Thermal analysis of tyre curing process. Engineering mechanics, 17th international conference. Prague. 2011: 223-226. Search in Google Scholar

39. Kašiković N, Novaković D, Milić N, Vladić G, Zeljković Ž, Stančić M. Thermovision and spectrophotometric analysis of ink volume and material characteristics influence on colour changes of heat treated printed substrates. Technical Gazette. 2015;(22)1: 33-41. doi: 10.17559/TV-2013092811550010.17559/TV-20130928115500 Search in Google Scholar

40. Michalak M. Non-contact tests of thermal properties of textiles, Part 1. (Bezkontaktowe badania właściwości cieplnych wyrobów włókienniczych. Cz. 1.) Przegląd Włókienniczy - Włókno, Odzież, Skóra. 2010; 2: 31-33. Search in Google Scholar

41. Litstera JD, Omara C, Salman AD, Yua M, Weidemannb M, Schmidt A. Roller compaction: Infrared thermography as a PAT for monitoring powder flow from feeding to compaction zone. International Journal of Pharmaceutics. 2020;578: 119114. https://doi.org/10.1016/j.ijpharm.2020.11911410.1016/j.ijpharm.2020.119114 Search in Google Scholar

42. Kostencki P, Stawicki T, Królicka A. Wear of Ploughshare Material With Regards to the Temperature Distribution on the Rake Face When Used in Soil. Journal of Tribology. 2022;144(4): 041704. https://doi.org/10.1115/1.405358610.1115/1.4053586 Search in Google Scholar

43. Yu M, Omar C, Weidemann M, Schmidt A, Litster JD, Salman AD. Roller compaction: Infrared thermography as a PAT for monitoring powder flow from feeding to compaction zone. Int J Pharm [Internet]. 2020;578(119114):119114. Available from: https://www.sciencedirect.com/science/article/pii/S037851732030098310.1016/j.ijpharm.2020.119114 Search in Google Scholar

44. Bembenek M, Krawczyk J, Pańcikiewicz K. The wear on roller press rollers made of 20Cr4/1.7027 steel under conditions of copper concentrate briquetting. Materials (Basel) [Internet]. 2020 [cited 2022 Jun 14];13(24):5782. Available from: https://www.mdpi.com/1996-1944/13/24/578210.3390/ma13245782 Search in Google Scholar

45. Bembenek M. Exploring efficiencies: Examining the possibility of decreasing the size of the briquettes used as the batch in the electric arc furnace dust processing line. Sustainability [Internet]. 2020 [cited 2022 Jun 14];12(16):6393. Available from: https://www.mdpi.com/2071-1050/12/16/639310.3390/su12166393 Search in Google Scholar

46. Bembenek M, Krawczyk J, Frocisz Ł, Śleboda T. The analysis of the morphology of the saddle-shaped bronze chips briquettes produced in the roller press. Materials (Basel) [Internet]. 2021 [cited 2022 Jun 14];14(6):1455. Available from: https://www.mdpi.com/1996-1944/14/6/145510.3390/ma14061455 Search in Google Scholar

47. Bembenek M, Uhryński A. Analysis of the temperature distribution on the surface of saddle-shaped briquettes consolidated in the roller press. Materials (Basel) [Internet]. 2021 [cited 2022 Jun 14];14(7):1770. Available from: https://www.mdpi.com/1996-1944/14/7/177010.3390/ma14071770 Search in Google Scholar

48. Uhryński A, Bembenek M. The thermographic analysis of the agglomeration process in the roller press of pillow-shaped briquettes. Materials (Basel) [Internet]. 2022 [cited 2022 Jun 14];15(8):2870. Available from: https://www.mdpi.com/1996-1944/15/8/287010.3390/ma15082870 Search in Google Scholar

49. Hryniewicz M., Janewicz A. Briquetting device. Polish patent, PL 222229 B1, July 29, 2016 Search in Google Scholar

50. Bembenek M, Buczak M, Baiul K. Modelling of the Fine-Grained Materials Briquetting Process in a Roller Press with the Discrete Element Method. Materials. 2022; 15(14):4901. https://doi.org/10.3390/ma1514490110.3390/ma15144901931788035888372 Search in Google Scholar

51. Bembenek M. Exploring Efficiencies: Examining the Possibility of Decreasing the Size of the Briquettes Used as the Batch in the Electric Arc Furnace Dust Processing Line. Sustainability. 2020; 12(16):6393. https://doi.org/10.3390/su1216639310.3390/su12166393 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo