[1. Ahangar-Asr H., Teshnehlab M., Mansouri M., Pazoki A. R. (2011), A Hybrid Strategy for the Control of Rotary Inverted Pendulum, International Conference on Electrical and Control Engineering (ICECE), 16–18 September, Yichang, China, 5656–5659.10.1109/ICECENG.2011.6057971]Search in Google Scholar
[2. Astrom K. J., Furuta K. (2000), Swing up a pendulum by energy control, Automatica, Vol. 36, No. 2, 287–295.]Search in Google Scholar
[3. Avago Technologies (2006), AEDS-962x for 150 LPI Ultra Small Optical Encoder Modules, May.]Search in Google Scholar
[4. Beater P. (2007), Pneumatic Drives, System Design, Modelling and Control, Springer.10.1007/978-3-540-69471-7]Search in Google Scholar
[5. Boubaker O. (2012), The Inverted Pendulum: A Fundamental Benchmark in Control Theory and Robotics, IEEE International Conference on Education and e-Learning Innovations, Jul.10.1109/ICEELI.2012.6360606]Search in Google Scholar
[6. Boubaker O. (2013), The Inverted Pendulum Benchmark in Nonlinear Control Theory: A Survey, International Journal of Advanced Robotic Systems, Vol. 10, 233:2013.]Search in Google Scholar
[7. Bryson A. E., Ho Y. C. (1969), Applied Optimal Control, Blaisdell.]Search in Google Scholar
[8. Hovingh A., Roon M. (2007), Design and Control of an Inverted Pendulum, Western Michigan University, Department of Aeronautical and Mechanical Engineering.]Search in Google Scholar
[9. Hui L., Min Z., Chen G. (2016), Cloud-Model PID Control of Double Inverted Pendulum Based on Information Fusion, 35th Chinese Control Conference, Jul. 27–29.]Search in Google Scholar
[10. MathWorks (2017), Matlab Control System Toolbox User’s Guide.]Search in Google Scholar
[11. Moore M. L., Musacchio J. T., Passino K. M. (2001), Genetic adaptive control for an inverted wedge: experiments and comparative analyses, Engineering Applications of Artifcial Intelligence, Vol. 14, 1–14.]Search in Google Scholar
[12. Ozbek N. S., Efe M. O. (2010), ”Swing up and Stabilization Control Experiments for a Rotary Inverted Pendulum - An Educational Comparison”, International Conference on Systems Man and Cybernetics (SMC), 10-13 October, Istanbul, Turkey, 2226–2231.10.1109/ICSMC.2010.5641962]Search in Google Scholar
[13. Prasad L. B., Tyagi B., Gupta H. O. (2014), Optimal Control of Nonlinear Inverted Pendulum System Using PID Controller and LQR: Performance Analysis Without and With Disturbance Input, International Journal of Automation and Computing 11(6), Dec., 661–670.]Search in Google Scholar
[14. Sang Y., Fan Y., Liu B. (2011), Double Inverted Pendulum Control Based on Three-loop PID and Improved BP Neural Network, Second International Conference on Digital Manufacturing and Automation (ICDMA), 5-7 August, Zhangjiajie, Hunan, China, 456–459.10.1109/ICDMA.2011.118]Search in Google Scholar
[15. Uszynski S., Ambroziak L., Kondratiuk M., Kulesza Z. (2018), Air Consumption Analysis in Compressed Air Powered Vehicles, 23rd International Conference on Methods and Models in Automation & Robotics, MMAR 2018 8486124, 837–842.10.1109/MMAR.2018.8486124]Search in Google Scholar
[16. Wang H., Chamroo A., Vasseur C., Koncar V. (2008), Stabilization of a 2-DOF Inverted Pendulum by a Low Cost Visual Feedback, American Control Conference, Seattle, 11–13 Jun.10.1109/ACC.2008.4587094]Search in Google Scholar
[17. White W. N., Fales R. C. (1999), Control of a Double Inverted Pendulum with Hydraulic Actuation: A Case Study. American Control Conference, San Diego, Jun.]Search in Google Scholar
[18. Zhangn X. L., Dai J. H., Cheng Y. T., Hao S., Li J. H. (2017), Nonlinear control of triple inverted pendulum based on T-S cloud inference network, Control And Decision Conference (CCDC), 28-30 May, Chongqing, China, 3290–3295.10.1109/CCDC.2017.7979074]Search in Google Scholar
[19. Zhijun L., Chenguang Y., Liping F. (2013), Advanced Control of Wheeled Inverted Pendulum Systems, Springer.]Search in Google Scholar