[1. Aggarwal C.C. (2015), Data Classification Algorithms and Applications, Chapman & Hall/CRC, New York.]Search in Google Scholar
[2. Alaiz-Moreton H., Fernández-Robles L., Alfonso-Cendón J., Castejón-Limas M., Sánchez-González L., Pérez H. (2018),Data mining techniques for the estimation of variables in health-related noisy data, Advances in intelligent systems and computing, 649, 482–491.10.1007/978-3-319-67180-2_47]Search in Google Scholar
[3. Bramer M. (2016), Principles of Data Mining, Springer.10.1007/978-1-4471-7307-6]Search in Google Scholar
[4. Chen Y.C., Suzuki T., Suzuki M., Takao H., Murayama Y., Ohwada H. (2017), Building a Classifier of Onset Stroke Prediction Using Random Tree Algorithm, International Journal of Machine Learning and Computing, 7(4), 61-66.10.18178/ijmlc.2017.7.4.621]Search in Google Scholar
[5. Dardzińska A. (2013), Action Rules Mining, Springer, Berlin.10.1007/978-3-642-35650-6]Search in Google Scholar
[6. Derlatka M., Ihnatouski M., Jałbrzykowski M., Lashkovski V., Minarowski Ł. (2019),Ensembling rules in automatic analysis of pressure on plantar surface in children with pes planovalgus, Advances in Medical Sciences, 64(1), 181-188.10.1016/j.advms.2018.08.00930716648]Search in Google Scholar
[7. Frank E., Hall M.A., Witten I.A. (2016), The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, Morgan Kaufmann.]Search in Google Scholar
[8. Han J., Kamber M. (2006), Data mining. Concepts and Techniques, 2nd ed, Elsevier, San Francisco.]Search in Google Scholar
[9. Jacobs L.K., Sapers B.L. (2011), Neurological Disease, In: Cohn S. (editor), Perioperative Medicine, Springer, London.10.1007/978-0-85729-498-2_29]Search in Google Scholar
[10. Kasperczuk A., Daniluk J., Dardzińska A.(2019), Smart Model to Distinguish Crohn’s Disease from Ulcerative Colitis, Applied Sciences, 9(8), 1650.10.3390/app9081650]Search in Google Scholar
[11. Kiranmai S.A., Laxmi J.A. (2018), Data mining for classification of power quality problems using WEKA and the effect of attributes on classification accuracy, Protection and Control of Modern Power Systems, 3(29),https://doi.org/10.1186/s41601-018-0103-3.10.1186/s41601-018-0103-3]Abierto DOISearch in Google Scholar
[12. Mackay J., Mensah G. (2004), The Atlas of Heart Disease and Stroke: Global burden of stroke, World Health Organization.]Search in Google Scholar
[13. Maimon O., Rokach L. (ed). (2010), Data mining and knowledge discovery handbook, Springer.10.1007/978-0-387-09823-4]Search in Google Scholar
[14. Mazur R., Świerkocka-Miastkowska M. (2005), Stroke - first symptoms (in Polish), Choroby Serca i Naczyń, 2 (2), 84-87.]Search in Google Scholar
[15. Sacco R.L., Kasner S.E., Broderick J.P., Caplan L.R., Connors J.J., Culebras A., Elkind M.S., George M.G., Hamdan A.D., Higashida R.T., Hoh B.L., Janis L.S., Kase C.S., Kleindorfer D.O., Lee J.M., Moseley M.E., Peterson E.D., Turan T.N., Valderrama A.L., Vinters H.V. (2013), An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association, Stroke, 44, 2064-2089.10.1161/STR.0b013e318296aeca23652265]Search in Google Scholar
[16. Strepikowska A., Buciński A. (2009), Stroke – risk factors and prophylaxis (in Polish), Farmakopea Polska, 65(1), 46–50.]Search in Google Scholar
[17. Trochimczyk A., Chorąży M., Snarska K.K. (2017), An analysis of patient quality of life after ischemic stroke of the brain, The journal of neurological and neurosurgical nursing, 6(2), 44–54.10.15225/PNN.2017.6.2.1]Search in Google Scholar
[18. Witten I.H., Frank E., Hall M.A. (2011), Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann.]Search in Google Scholar
[19. Yoo I., Alafaireet P., Marinov M. (2012), Data mining in healtcare and biomedicine, A survey of the literature, Journal of the medical systems, 35(4), 2431–2448.10.1007/s10916-011-9710-521537851]Search in Google Scholar
[20. Zdrodowska M., Dardzińska M., Chorąży M., Kułakowska A. (2018), Data Mining Techniques as a Tool in Neurological Disorders Diagnosis, Acta Mechanica et Automatica, 12(3), 217-220.10.2478/ama-2018-0033]Search in Google Scholar