[1. Abbasi W., Rehman F.U., Shah I., Rauf A. (2019), Stabilizing control algorithm for nonholonomic wheeled mobile robots using adaptive integral sliding mode, International Journal of Robotics and Automation, 34(2), 1-8.10.2316/J.2019.206-4803]Search in Google Scholar
[2. Aicardi M., Casalino G., Bicchi A., Balestrino A. (1995), Closed loop steering of unicycle-like vehicles via Lyapunov techniques, IEEE Robotics and Automation Magazine, 2(1), 27–35.10.1109/100.388294]Search in Google Scholar
[3. Astolfi A. (1996), Discontinuous control of nonholonomic systems, Systems Control Letters, 27, 37–45.10.1016/0167-6911(95)00041-0]Search in Google Scholar
[4. Baranowski L.M., Siwek L.M. (2018), Use of 3D simulation to design theoretical and real pipe inspection mobile robot model, Acta Mechanica et Automatica, 12(3), 232–236.10.2478/ama-2018-0036]Search in Google Scholar
[5. Brockett R.W. (1983), Differential geometric control theory - asymptotic stability and feedback stabilization, MA: Birkhäuser.]Search in Google Scholar
[6. Hashimoto W., Yamashita Y., Kobayashi K. (2019), Asymptotic stabilization of nonholonomic four-wheeled vehicle with steering limitation, IEICE Transactions on Fundamental Electronics, Communications, and Computer Sciences, E102.A (1), 227–234.]Search in Google Scholar
[7. Hespanha J.P., Morse A.S. (1999), Stabilization of nonholonomic integrators via logic-based switching, Automatica, 35(3), 385–393.10.1016/S0005-1098(98)00166-6]Search in Google Scholar
[8. Kłosiński J., Janusz J. J., Nycz R. (2015), The impact of the FLC controller’s settings on the precision of the positioning of a payload transferred by a mobile crane, Acta Mechanica et Automatica, 8(4), 181–184.10.2478/ama-2014-0032]Search in Google Scholar
[9. Lamiraux F., Laumond J.P. (2000), Flatness and small-time controllability of multibody mobile robots: Application to motion planning, IEEE Transactions on Automatic Control, 45(10), 1878–1881.10.1109/TAC.2000.880989]Search in Google Scholar
[10. Morin P.C., Samson C. (2009), Control of nonholonomic mobile robots based on the transverse function approach, IEEE Transactions on Robotics, 25(5), 1058–1073.10.1109/TRO.2009.2014123]Search in Google Scholar
[11. Muralidharan V., Mahindrakar, A.D. (2014), Position stabilization and waypoint tracking control of mobile inverted pendulum robot, IEEE Transactions on Control Systems Technology, 22(6), 2360–2367.10.1109/TCST.2014.2300171]Search in Google Scholar
[12. Murray R.M., Sastry S.S. (1993), Nonholonomic motion Planning: Steering using Sinusoids, IEEE Transactions on Automatic Control, 38(5), 700–716.10.1109/9.277235]Search in Google Scholar
[13. Pomet J.-B., Samson C. (1994), Time-varying exponential stabilization of nonholonomic systems in power form, Proceedings of the IFAC Symposium of Robust Control Design, Rio de Janeiro, 447–452.]Search in Google Scholar
[14. Ryu J.C., Agrawal S.K. (2010), Planning and control of under-actuated mobile manipulators using differential flatness, Autonomous Robots, 29(1), 35–52.10.1007/s10514-010-9185-0]Search in Google Scholar
[15. S’anchez-Torres J.D., Defoort D.M., Muñoz-Vázquez A.J. (2019), Predefined-time stabilization of a class of nonholonomic systems, International Journal of Control, DOI: 10.1080/00207179.2019.1569262.10.1080/00207179.2019.1569262]Abierto DOISearch in Google Scholar
[16. Samson C. (1995). Control of chained systems application to path following and time-varying point stabilization of mobile robots, IEEE Transactions on Automatic Control, 40(1), 64–77.10.1109/9.362899]Search in Google Scholar
[17. Sankaranarayanan V. Mahindrakar A.D. (2013). Configuration constrained stabilization of a wheeled mobile robot-theory and experiment, IEEE Transactions on Control Systems Technology, 21(1), 275–280.10.1109/TCST.2011.2181378]Search in Google Scholar
[18. Siegwart R., Nourbakhsh I. R. (2004), Introduction to Autonomous Mobile Robot, Cambridge, MA: MIT Press.]Search in Google Scholar
[19. Soueres P., Laumond J.P. (1996). Shortest paths synthesis for a car-like robot, IEEE Transactions on Automatic Control, 41(5), 672–688.10.1109/9.489204]Search in Google Scholar
[20. Tamba T., Hong B., Hong K.-S. (2009), A path following control of an unmanned autonomous forklift. International Journal of Control, Automation, and Systems, 7(1), 113–122.10.1007/s12555-009-0114-y]Search in Google Scholar
[21. Tang C. P., Miller P.T., Krovi V.N., Ryu J.-C., Agrawal S.K. (2008), Kinematic control of a nonholonomic wheeled mobile manipulator - a differential flatness approach, Proceedings of the ASME Dynamic Syst. Control Conference, Ann Arbor, Michigan, USA, 2008–2253.]Search in Google Scholar
[22. Virgalaivan I., Lipták T., Miková, Ľ. (2018), Snake robot locomotion patterns for straight and curved pipe, Journal of Mechanical Engineering, 68(2), 91–104.10.2478/scjme-2018-0020]Search in Google Scholar
[23. Wang Y., Miao Z., Zhong H., Pan Q. (2015), Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach, IEEE Transactions on Control Systems Technology, 23(4), 1440–1450.10.1109/TCST.2014.2375812]Search in Google Scholar
[24. Wei S., Uthaichana K., Žefran M. DeCarlo R. (2013), Hybrid model predictive control for the stabilization of wheeled mobile robots subject to wheel slippage, IEEE Transactions on Control Systems Technology, 21(6), 2181–2193.10.1109/TCST.2012.2227964]Search in Google Scholar
[25. Widyotriatmo A., Hong K.-S. (2008). Decision making framework for autonomous vehicle navigation, Proceedings of the SICE Annual Conference-International Conference on Instrumentation, Control and Information Technology, Tokyo, Japan, 20-22 August, 1002–1007.10.1109/SICE.2008.4654802]Search in Google Scholar
[26. Widyotriatmo A., Hong K.-S. (2012), Switching algorithm for robust configuration control of a wheeled vehicle, Control Engineering Practice, 20(3), 315–325.10.1016/j.conengprac.2011.11.007]Search in Google Scholar
[27. Widyotriatmo A., Hong K.-S. (2015), Configuration control of an autonomous vehicle under nonholonomic and field-of-view constraints, International Journal of Imaging and Robotics, 15(3), 126–139.]Search in Google Scholar
[28. Xiao H., Li Z., Yang C., Zhang L., Yuan P., Ding, L., Wang T. (2017), Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization, IEEE Transactions on Industrial Electronics, 65(4), 3437–3446.]Search in Google Scholar
[29. Xie X.-J., Li G.-J. (2019), Finite-time output-feedback stabilization of high-order nonholonomic systems, International Journal of Robust and Nonlinear Control, 29(9), 2695–2711.10.1002/rnc.4516]Search in Google Scholar
[30. Yue M.Y., Ning M. Y., Zhao X., Zong G. (2019), Point stabilization control method for WIP vehicles based on motion planning, IEEE Transactions on Industrial Informatics, 25(6), 3368–3378.10.1109/TII.2018.2875048]Search in Google Scholar