Cite

1. Baxevanis T., Lagoudas D. (2012), A mode I fracture analysis of a center-cracked in niti shape memory alloy panel under plane stress, International Journal of Fracture, 175, 151–166.10.1007/s10704-012-9709-zSearch in Google Scholar

2. Bujoreanu L.G. (2008), On the influence of austenitization on the morphology of alfa-phase in tempered Cu–Zn–Al shape memory alloys, Materials Science and Engineering A, 481, 395–403.10.1016/j.msea.2006.12.223Search in Google Scholar

3. Di Cocco V., Iacoviello F., Maletta C., Natali S. (2014a), Cyclic microstructural transitions and fracture micromechanisms in a near equiatomic NiTi alloy, International Journal of Fatigue, 58, 136–143.10.1016/j.ijfatigue.2013.03.009Search in Google Scholar

4. Di Cocco V., Iacoviello F., Natali S., Volpe V. (2014b), Fatigue crack behavior on a Cu-Zn-Al SMA, Frattura ed Integrità Strutturale, 30, 454–461.10.3221/IGF-ESIS.30.55Search in Google Scholar

5. Freed Y., Banks-Sills L. (2001), Crack growth resistance of shape memory alloys by means of a cohesive zone model, Journal of the Mechanics and Physics of Solids, 55, 2157–2180.10.1016/j.jmps.2007.03.002Search in Google Scholar

6. Gall K., Tyber J., Wilkesanders G., Robertson S.W., Ritchie R.O., Maier H.J. (2008), Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys, Materials Science and Engineering A, 486, 389–403.10.1016/j.msea.2007.11.033Search in Google Scholar

7. Kuribayashi K., Tsuchiya K., You Z., Tomus D., Umemoto M., Ito T., Sasaki M. (2006), Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil, Materials Science and Engineering A, 419, 131–137.10.1016/j.msea.2005.12.016Search in Google Scholar

8. Li Y.F., Mi X.J., Tan J., Gao B.D. (2009), Thermo-mechanical cyclic transformation behavior of Ti–Ni shape memory alloy wire, Materials Science and Engineering A, 509, 8–13.10.1016/j.msea.2009.02.041Search in Google Scholar

9. Maletta C. (2012), A novel fracture mechanics approach for shape memory alloys with trilinear stress-strain behavior, International Journal of Fracture, 177, 39–51.10.1007/s10704-012-9750-ySearch in Google Scholar

10. Maletta C., Falvo A., Furgiuele F., Leonardi A. (2009), Stress induced martensitic transformation in the crack tip region of a NiTi alloy, Journal of Materials Engineering and Performance, 18, 679–685.10.1007/s11665-009-9361-6Search in Google Scholar

11. Maletta C., Furgiuele F. (2010), Analytical modeling of stress induced martensitic transformation in the crack tip region of nickeltitanium alloys, Acta Materialia, 58, 92–101.10.1016/j.actamat.2009.08.060Search in Google Scholar

12. Maletta C., Furgiuele F., Sgambitterra E. (2013), Crack tip stress distribution and stress intensity factor in shape memory alloys, Fatigue and Fracture of Engineering Materials and Structures, 36, 903–912.10.1111/ffe.12055Search in Google Scholar

13. Otsuka K., Ren X. (2005), Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50, 511–678.10.1016/j.pmatsci.2004.10.001Search in Google Scholar

14. Robertson S.W., Mehta A., Pelton A.R., Ritchie R.O. (2007), Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray microdiffraction analysis, Acta Materialia, 55, 6198–6207.10.1016/j.actamat.2007.07.028Search in Google Scholar

15. Shimamoto A., Zhao H.Y., Abe H. (2004), Fatigue crack propagation and local crack-tip strain behavior in TiNi shape memory fiber reinforced composite, International Journal of Fatigue, 26, 533–542.10.1016/j.ijfatigue.2003.09.005Search in Google Scholar