Acceso abierto

Interplay between mistranslation and oxidative stress in Escherichia coli


Cite

Rubio Gomez MA, Ibba M. Aminoacyl-tRNA synthetases. RNA 2020;26:910–36. doi: 10.1261/rna.071720.119 Rubio GomezMA IbbaM Aminoacyl-tRNA synthetases RNA 2020 26 910 36 10.1261/rna.071720.119 Open DOISearch in Google Scholar

Močibob M, Rokov-Plavec J, Godinić-Mikulčić V, Gruić-Sovulj I. Seryl-tRNA synthetases in translation and beyond. Croat Chem Acta 2016;89:261–76. doi: 10.5562/cca2908 MočibobM Rokov-PlavecJ Godinić-MikulčićV Gruić-SovuljI Seryl-tRNA synthetases in translation and beyond Croat Chem Acta 2016 89 261 76 10.5562/cca2908 Open DOISearch in Google Scholar

Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023;37(11):e23219. doi: 10.1096/fj.202202024RR GuptaS JaniJ Vijayasurya MochiJ TabasumS SabarwalA PappachanA Aminoacyl-tRNA synthetase - a molecular multitasker FASEB J 2023 37 11 e23219 10.1096/fj.202202024RR Open DOISearch in Google Scholar

Dulic M, Godinic-Mikulcic V, Kekez M, Evic V, Rokov-Plavec J. Protein-protein interactions of seryl-tRNA synthetases with emphasis on human counterparts and their connection to health and disease. Life (Basel) 2024;14(1):124. doi: 10.3390/life14010124 DulicM Godinic-MikulcicV KekezM EvicV Rokov-PlavecJ Protein-protein interactions of seryl-tRNA synthetases with emphasis on human counterparts and their connection to health and disease Life (Basel) 2024 14 1 124 10.3390/life14010124 Open DOISearch in Google Scholar

Kekez M, Zanki V, Kekez I, Baranasic J, Hodnik V, Duchêne AM, Anderluh G, Gruic-Sovulj I, Matković-Čalogović D, Weygand-Durasevic I, Rokov-Plavec J. Arabidopsis seryl-tRNA synthetase: the first crystal structure and novel protein interactor of plant aminoacyltRNA synthetase. FEBS J 2019;286:536–54. doi: 10.1111/febs.14735 KekezM ZankiV KekezI BaranasicJ HodnikV DuchêneAM AnderluhG Gruic-SovuljI Matković-ČalogovićD Weygand-DurasevicI Rokov-PlavecJ Arabidopsis seryl-tRNA synthetase: the first crystal structure and novel protein interactor of plant aminoacyltRNA synthetase FEBS J 2019 286 536 54 10.1111/febs.14735 Open DOISearch in Google Scholar

Baranašić J, Mihalak A, Gruić-Sovulj I, Bauer N, Rokov-Plavec J. Expression of genes for selected plant aminoacyl-tRNA synthetases in the abiotic stress. Acta Bot Croat 2021;80:35–42. doi: 10.37427/botcro-2021-010 BaranašićJ MihalakA Gruić-SovuljI BauerN Rokov-PlavecJ Expression of genes for selected plant aminoacyl-tRNA synthetases in the abiotic stress Acta Bot Croat 2021 80 35 42 10.37427/botcro-2021-010 Open DOISearch in Google Scholar

Rokov J, Weygand-Đurašević I. Seryl-tRNA synthesis in maize. Period Biol 1999;101:137–42. RokovJ Weygand-ĐuraševićI Seryl-tRNA synthesis in maize Period Biol 1999 101 137 42 Search in Google Scholar

Rokov-Plavec J, Bilokapić S, Gruić-Sovulj I, Močibob M, Glavan F, Brgles M, Weygand-Đurašević I. Unilateral flexibility in tRNASer recognition by heterologous Seryl-tRNA synthetases. Period Biol 2004;106:147–54. Rokov-PlavecJ BilokapićS Gruić-SovuljI MočibobM GlavanF BrglesM Weygand-ĐuraševićI Unilateral flexibility in tRNASer recognition by heterologous Seryl-tRNA synthetases Period Biol 2004 106 147 54 Search in Google Scholar

Perona JJ, Gruic-Sovulj I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem 2014;344:1–41. doi: 10.1007/128_2013_456 PeronaJJ Gruic-SovuljI Synthetic and editing mechanisms of aminoacyl-tRNA synthetases Top Curr Chem 2014 344 1 41 10.1007/128_2013_456 Open DOISearch in Google Scholar

Tawfik DS, Gruic-Sovulj I. How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J 2020;287:1284–305. doi: 10.1111/febs.15199 TawfikDS Gruic-SovuljI How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes FEBS J 2020 287 1284 305 10.1111/febs.15199 Open DOISearch in Google Scholar

Dulic M, Cvetesic N, Perona JJ, Gruic-Sovulj I. Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases. J Biol Chem 2010;285:23799–809. doi: 10.1074/jbc.M110.133553 DulicM CvetesicN PeronaJJ Gruic-SovuljI Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases J Biol Chem 2010 285 23799 809 10.1074/jbc.M110.133553 Open DOISearch in Google Scholar

Bilus M, Semanjski M, Mocibob M, Zivkovic I, Cvetesic N, Tawfik DS, Toth-Petroczy A, Macek B, Gruic-Sovulj I. On the mechanism and origin of isoleucyl-tRNA synthetase editing against norvaline. J Mol Biol 2019;431:1284–97. doi: 10.1016/j.jmb.2019.01.029 BilusM SemanjskiM MocibobM ZivkovicI CvetesicN TawfikDS Toth-PetroczyA MacekB Gruic-SovuljI On the mechanism and origin of isoleucyl-tRNA synthetase editing against norvaline J Mol Biol 2019 431 1284 97 10.1016/j.jmb.2019.01.029 Open DOISearch in Google Scholar

Umbarger HE. Amino acid biosynthesis and its regulation. Annu Rev Biochem 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533 UmbargerHE Amino acid biosynthesis and its regulation Annu Rev Biochem 1978 47 532 606 10.1146/annurev.bi.47.070178.002533 Open DOISearch in Google Scholar

Dulic M, Perona JJ, Gruic-Sovulj I. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase. Biochemistry 2014;53:6189–98. doi: 10.1021/bi5007699 DulicM PeronaJJ Gruic-SovuljI Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase Biochemistry 2014 53 6189 98 10.1021/bi5007699 Open DOISearch in Google Scholar

Cvetesic N, Bilus M, Gruic-Sovulj I. The tRNA A76 hydroxyl groups control partitioning of the tRNA-dependent pre- and post-transfer editing pathways in class I tRNA synthetase. J Biol Chem 2015;290:13981–91. doi: 10.1074/jbc.M115.648568 CvetesicN BilusM Gruic-SovuljI The tRNA A76 hydroxyl groups control partitioning of the tRNA-dependent pre- and post-transfer editing pathways in class I tRNA synthetase J Biol Chem 2015 290 13981 91 10.1074/jbc.M115.648568 Open DOISearch in Google Scholar

Lu J, Bergert M, Walther A, Suter B. Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development. Nat Commun 2014;5:5650. doi: 10.1038/ncomms6650 LuJ BergertM WaltherA SuterB Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development Nat Commun 2014 5 5650 10.1038/ncomms6650 Open DOISearch in Google Scholar

Kelly P, Backes N, Mohler K, Buser C, Kavoor A, Rinehart J, Phillips G, Ibba M. Alanyl-tRNA synthetase quality control prevents global dysregulation of the Escherichia coli proteome. mBio 2019;10:e02921–19. doi: 10.1128/mBio.02921-19 KellyP BackesN MohlerK BuserC KavoorA RinehartJ PhillipsG IbbaM Alanyl-tRNA synthetase quality control prevents global dysregulation of the Escherichia coli proteome mBio 2019 10 e02921 19 10.1128/mBio.02921-19 Open DOISearch in Google Scholar

Berg MD, Zhu Y, Loll-Krippleber R, San Luis BJ, Genereaux J, Boone C, Villén J, Brown GW, Brandl CJ. Genetic background and mistranslation frequency determine the impact of mistranslating tRNASerUGG. G3 (Bethesda) 2022;12:jkac125. doi: 10.1093/g3journal/jkac125 BergMD ZhuY Loll-KrippleberR San LuisBJ GenereauxJ BooneC VillénJ BrownGW BrandlCJ Genetic background and mistranslation frequency determine the impact of mistranslating tRNASerUGG G3 (Bethesda) 2022 12 jkac125 10.1093/g3journal/jkac125 Open DOISearch in Google Scholar

Reynolds NM, Ling J, Roy H, Banerjee R, Repasky SE, Hamel P, Ibba M. Cell-specific differences in the requirements for translation quality control. Proc Natl Acad Sci U S A 2010;107:4063–8. doi: 10.1073/pnas.0909640107 ReynoldsNM LingJ RoyH BanerjeeR RepaskySE HamelP IbbaM Cell-specific differences in the requirements for translation quality control Proc Natl Acad Sci U S A 2010 107 4063 8 10.1073/pnas.0909640107 Open DOISearch in Google Scholar

Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 2006;443:50–5. doi: 10.1038/nature05096 LeeJW BeebeK NangleLA JangJ Longo-GuessCM CookSA DavissonMT SundbergJP SchimmelP AckermanSL Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration Nature 2006 443 50 5 10.1038/nature05096 Open DOISearch in Google Scholar

Nakayama T, Wu J, Galvin-Parton P, Weiss J, Andriola MR, Hill RS, Vaughan DJ, El-Quessny M, Barry BJ, Partlow JN, Barkovich AJ, Ling J, Mochida GH. Deficient activity of alanyl-tRNA synthetase underlies an autosomal recessive syndrome of progressive microcephaly, hypomyelination, and epileptic encephalopathy. Hum Mutat 2017;38:1348–54. doi: 10.1002/humu.23250 NakayamaT WuJ Galvin-PartonP WeissJ AndriolaMR HillRS VaughanDJ El-QuessnyM BarryBJ PartlowJN BarkovichAJ LingJ MochidaGH Deficient activity of alanyl-tRNA synthetase underlies an autosomal recessive syndrome of progressive microcephaly, hypomyelination, and epileptic encephalopathy Hum Mutat 2017 38 1348 54 10.1002/humu.23250 Open DOISearch in Google Scholar

Qiu Y, Kenana R, Beharry A, Wilhelm SDP, Hsu SY, Siu VM, Duennwald M, Heinemann IU. Histidine supplementation can escalate or rescue HARS deficiency in a Charcot-Marie-Tooth disease model. Hum Mol Genet 2023;32:810–24. doi: 10.1093/hmg/ddac239 QiuY KenanaR BeharryA WilhelmSDP HsuSY SiuVM DuennwaldM HeinemannIU Histidine supplementation can escalate or rescue HARS deficiency in a Charcot-Marie-Tooth disease model Hum Mol Genet 2023 32 810 24 10.1093/hmg/ddac239 Open DOISearch in Google Scholar

Serio AW, Keepers T, Andrews L, Krause KM. Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal Plus 2018;8(1). doi: 10.1128/ecosalplus.ESP-0002-2018 SerioAW KeepersT AndrewsL KrauseKM Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation EcoSal Plus 2018 8 1 10.1128/ecosalplus.ESP-0002-2018 Open DOISearch in Google Scholar

Pranjic M, Spät P, Semanjski Curkovic M, Macek B, Gruic-Sovulj I, Mocibob M. Resilience and proteome response of Escherichia coli to high levels of isoleucine mistranslation. Int J Biol Macromol 2024;262(Pt 1):130068. doi: 10.1016/j.ijbiomac.2024.130068 PranjicM SpätP Semanjski CurkovicM MacekB Gruic-SovuljI MocibobM Resilience and proteome response of Escherichia coli to high levels of isoleucine mistranslation Int J Biol Macromol 2024 262 Pt 1 130068 10.1016/j.ijbiomac.2024.130068 Open DOISearch in Google Scholar

Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol 2017;52:205–19. doi: 10.1080/10409238.2016.1274284 SchwartzMH PanT Function and origin of mistranslation in distinct cellular contexts Crit Rev Biochem Mol Biol 2017 52 205 19 10.1080/10409238.2016.1274284 Open DOISearch in Google Scholar

Lyu Z, Wilson C, Ling J. Translational fidelity during bacterial stresses and host interactions. Pathogens 2023;12:383. doi: 10.3390/pathogens12030383 LyuZ WilsonC LingJ Translational fidelity during bacterial stresses and host interactions Pathogens 2023 12 383 10.3390/pathogens12030383 Open DOISearch in Google Scholar

Netzer N, Goodenbour JM, David A, Dittmar KA, Jones RB, Schneider JR, Boone D, Eves EM, Rosner MR, Gibbs JS, Embry A, Dolan B, Das S, Hickman HD, Berglund P, Bennink JR, Yewdell JW, Pan T. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 2009;462:522–6. doi: 10.1038/nature08576 NetzerN GoodenbourJM DavidA DittmarKA JonesRB SchneiderJR BooneD EvesEM RosnerMR GibbsJS EmbryA DolanB DasS HickmanHD BerglundP BenninkJR YewdellJW PanT Innate immune and chemically triggered oxidative stress modifies translational fidelity Nature 2009 462 522 6 10.1038/nature08576 Open DOISearch in Google Scholar

Ezraty B, Gennaris A, Barras F, Collet JF. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 2017;15:385–396. doi: 10.1038/nrmicro.2017.26 EzratyB GennarisA BarrasF ColletJF Oxidative stress, protein damage and repair in bacteria Nat Rev Microbiol 2017 15 385 396 10.1038/nrmicro.2017.26 Open DOISearch in Google Scholar

Li L, Boniecki MT, Jaffe JD, Imai BS, Yau PM, Luthey-Schulten ZA, Martinis SA. Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites. Proc Natl Acad Sci U S A 2011;108:9378–83. doi: 10.1073/pnas.1016460108 LiL BonieckiMT JaffeJD ImaiBS YauPM Luthey-SchultenZA MartinisSA Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites Proc Natl Acad Sci U S A 2011 108 9378 83 10.1073/pnas.1016460108 Open DOISearch in Google Scholar

Yadavalli SS, Ibba M. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code. Nucleic Acids Res 2013;41:1104–12. doi: 10.1093/nar/gks1240 YadavalliSS IbbaM Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code Nucleic Acids Res 2013 41 1104 12 10.1093/nar/gks1240 Open DOISearch in Google Scholar

Su HW, Zhu JH, Li H, Cai RJ, Ealand C, Wang X, Chen YX, Kayani MU, Zhu TF, Moradigaravand D, Huang H, Kana BD, Javid B. The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity. Nat Microbiol 2016;1(11):16147. doi: 10.1038/nmicrobiol.2016.147 SuHW ZhuJH LiH CaiRJ EalandC WangX ChenYX KayaniMU ZhuTF MoradigaravandD HuangH KanaBD JavidB The essential mycobacterial amidotransferase GatCAB is a modulator of specific translational fidelity Nat Microbiol 2016 1 11 16147 10.1038/nmicrobiol.2016.147 Open DOISearch in Google Scholar

Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279:L1005–28. doi: 10.1152/ajplung.2000.279.6.L1005 ThannickalVJ FanburgBL Reactive oxygen species in cell signaling Am J Physiol Lung Cell Mol Physiol 2000 279 L1005 28 10.1152/ajplung.2000.279.6.L1005 Open DOISearch in Google Scholar

Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014;15:411–21. doi: 10.1038/nrm3801 HolmströmKM FinkelT Cellular mechanisms and physiological consequences of redox-dependent signalling Nat Rev Mol Cell Biol 2014 15 411 21 10.1038/nrm3801 Open DOISearch in Google Scholar

Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013;11:443–54. doi: 10.1038/nrmicro3032 ImlayJA The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium Nat Rev Microbiol 2013 11 443 54 10.1038/nrmicro3032 Open DOISearch in Google Scholar

Imlay JA. Where in the world do bacteria experience oxidative stress? Environ Microbiol 2019;21:521–30. doi: 10.1111/1462-2920.14445 ImlayJA Where in the world do bacteria experience oxidative stress? Environ Microbiol 2019 21 521 30 10.1111/1462-2920.14445 Open DOISearch in Google Scholar

Ling J, Söll D. Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc Natl Acad Sci U S A 2010;107:4028–33. doi: 10.1073/pnas.1000315107 LingJ SöllD Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site Proc Natl Acad Sci U S A 2010 107 4028 33 10.1073/pnas.1000315107 Open DOISearch in Google Scholar

Wu J, Fan Y, Ling J. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase. Nucleic Acids Res 2014;42:6523–31. doi: 10.1093/nar/gku271 WuJ FanY LingJ Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase Nucleic Acids Res 2014 42 6523 31 10.1093/nar/gku271 Open DOISearch in Google Scholar

Wang C, Guo Y, Tian Q, Jia Q, Gao Y, Zhang Q, Zhou C, Xie W. SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis. Nucleic Acids Res 2015;43:10534–45. doi: 10.1093/nar/gkv996 WangC GuoY TianQ JiaQ GaoY ZhangQ ZhouC XieW SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis Nucleic Acids Res 2015 43 10534 45 10.1093/nar/gkv996 Open DOISearch in Google Scholar

Chakraborty S, Ganguli S, Chowdhury A, Ibba M, Banerjee R. Reversible inactivation of yeast mitochondrial phenylalanyl-tRNA synthetase under oxidative stress. Biochim Biophys Acta Gen Subj 2018;1862:1801–9. doi: 10.1016/j.bbagen.2018.04.023 ChakrabortyS GanguliS ChowdhuryA IbbaM BanerjeeR Reversible inactivation of yeast mitochondrial phenylalanyl-tRNA synthetase under oxidative stress Biochim Biophys Acta Gen Subj 2018 1862 1801 9 10.1016/j.bbagen.2018.04.023 Open DOISearch in Google Scholar

Evic V, Soic R, Mocibob M, Kekez M, Houser J, Wimmerová M, Matković-Čalogović D, Gruic-Sovulj I, Kekez I, Rokov-Plavec J. Evolutionarily conserved cysteines in plant cytosolic seryl-tRNA synthetase are important for its resistance to oxidation. FEBS Lett 2023;597:2975–92. doi: 10.1002/1873-3468.14748 EvicV SoicR MocibobM KekezM HouserJ WimmerováM Matković-ČalogovićD Gruic-SovuljI KekezI Rokov-PlavecJ Evolutionarily conserved cysteines in plant cytosolic seryl-tRNA synthetase are important for its resistance to oxidation FEBS Lett 2023 597 2975 92 10.1002/1873-3468.14748 Open DOISearch in Google Scholar

Kekez M, Bauer N, Saric E, Rokov-Plavec J. Exclusive cytosolic localization and broad tRNASer specificity of Arabidopsis thaliana Seryl-tRNA synthetase. J Plant Biol 2016;59:44–54. doi: 10.1007/s12374-016-0370-3 KekezM BauerN SaricE Rokov-PlavecJ Exclusive cytosolic localization and broad tRNASer specificity of Arabidopsis thaliana Seryl-tRNA synthetase J Plant Biol 2016 59 44 54 10.1007/s12374-016-0370-3 Open DOISearch in Google Scholar

Steiner RE, Kyle AM, Ibba M. Oxidation of phenylalanyl-tRNA synthetase positively regulates translational quality control. Proc Natl Acad Sci U S A 2019;116:10058–63. doi: 10.1073/pnas.1901634116 SteinerRE KyleAM IbbaM Oxidation of phenylalanyl-tRNA synthetase positively regulates translational quality control Proc Natl Acad Sci U S A 2019 116 10058 63 10.1073/pnas.1901634116 Open DOISearch in Google Scholar

Kavoor A, Kelly P, Ibba M. Escherichia coli alanyl-tRNA synthetase maintains proofreading activity and translational accuracy under oxidative stress. J Biol Chem 2022;298(3):101601. doi: 10.1016/j.jbc.2022.101601 KavoorA KellyP IbbaM Escherichia coli alanyl-tRNA synthetase maintains proofreading activity and translational accuracy under oxidative stress J Biol Chem 2022 298 3 101601 10.1016/j.jbc.2022.101601 Open DOISearch in Google Scholar

Pezo V, Metzgar D, Hendrickson TL, Waas WF, Hazebrouck S, Döring V, Marlière P, Schimmel P, De Crécy-Lagard V. Artificially ambiguous genetic code confers growth yield advantage. Proc Natl Acad Sci U S A 2004;101:8593–7. doi: 10.1073/pnas.0402893101 PezoV MetzgarD HendricksonTL WaasWF HazebrouckS DöringV MarlièreP SchimmelP De Crécy-LagardV Artificially ambiguous genetic code confers growth yield advantage Proc Natl Acad Sci U S A 2004 101 8593 7 10.1073/pnas.0402893101 Open DOISearch in Google Scholar

Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress. Nucleic Acids Res 2019;47:7592–604. doi: 10.1093/nar/gkz467 ZhuM DaiX Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress Nucleic Acids Res 2019 47 7592 604 10.1093/nar/gkz467 Open DOISearch in Google Scholar

Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 2000;50:279–89. doi: 10.1080/713803728 DaviesKJ Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems IUBMB Life 2000 50 279 89 10.1080/713803728 Open DOISearch in Google Scholar

Park S, You X, Imlay JA. Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx mutants of Escherichia coli. Proc Natl Acad Sci U S A 2005;102:9317–22. doi: 10.1073/pnas.0502051102 ParkS YouX ImlayJA Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx mutants of Escherichia coli Proc Natl Acad Sci U S A 2005 102 9317 22 10.1073/pnas.0502051102 Open DOISearch in Google Scholar

Imlay JA, Linn S. Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. J Bacteriol 1986;166:519–27. doi: 10.1128/jb.166.2.519-527.1986 ImlayJA LinnS Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide J Bacteriol 1986 166 519 27 10.1128/jb.166.2.519-527.1986 Open DOISearch in Google Scholar

Fan Y, Wu J, Ung MH, De Lay N, Cheng C, Ling J. Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Res 2015;43:1740–8. doi: 10.1093/nar/gku1404 FanY WuJ UngMH De LayN ChengC LingJ Protein mistranslation protects bacteria against oxidative stress Nucleic Acids Res 2015 43 1740 8 10.1093/nar/gku1404 Open DOISearch in Google Scholar

eISSN:
1848-6312
Idiomas:
Inglés, Slovenian
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Basic Medical Science, other