Acceso abierto

The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals


Cite

1. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992;339:1523-6. doi: 10.1016/0140-6736(92)91277-F10.1016/0140-6736(92)91277-FSearch in Google Scholar

2. Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 2008;33:2416-26. doi: 10.1007/s11064-008-9697-610.1007/s11064-008-9697-6Search in Google Scholar

3. Plaza M, Batista ÂG, Cazarin CBB, Sandahl M, Turner C, Östman E, Maróstica Júnior MR. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: a pilot clinical study. Food Chem 2016;211:185-97. doi: 10.1016/j.foodchem.2016.04.14210.1016/j.foodchem.2016.04.142Search in Google Scholar

4. Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 2013;68:125-31. doi: 10.1016/j.phrs.2012.10.01810.1016/j.phrs.2012.10.018Search in Google Scholar

5. Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013;45:2821-31. doi: 10.1016/j.biocel.2013.10.00410.1016/j.biocel.2013.10.004Search in Google Scholar

6. Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 2011;41:1346-59. doi: 10.1111/j.1365-2222.2011.03773.x10.1111/j.1365-2222.2011.03773.xSearch in Google Scholar

7. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015;64:872-83. doi: 10.1136/gutjnl-2014-30714210.1136/gutjnl-2014-307142Search in Google Scholar

8. Chen M-L, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu J-D, Zhang Q-Y, Mi M-T. Resveratrol attenuates trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 2016;7:e02210-15. doi: 10.1128/mBio.02210-1510.1128/mBio.02210-15Search in Google Scholar

9. Yang B, Kotani A, Arai K, Kusu F. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Anal Sci 2001;17:599-604. doi: 10.2116/analsci.17.59910.2116/analsci.17.599Search in Google Scholar

10. Hotta H, Nagano S, Ueda M, Tsujino Y, Koyama J, Osakai T. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim Biophys Acta 2002;1572:123-32. doi: 10.1016/S0304-4165(02)00285-410.1016/S0304-4165(02)00285-4Search in Google Scholar

11. Komorsky-Lovrić Š, Novak Jovanović I. Abrasive stripping square wave voltammetry of some natural antioxidants. Int J Electrochem Sci 2016;11:836-42.10.1016/S1452-3981(23)15887-1Search in Google Scholar

12. Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 1997;22:749-60. doi: 10.1016/S0891-5849(96)00351-610.1016/S0891-5849(96)00351-6Search in Google Scholar

13. Chen ZY, Chan PT, Ho KY, Fung KP, Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids 1996;79:157-63. doi: 10.1016/0009-3084(96)02523-610.1016/0009-3084(96)02523-6Search in Google Scholar

14. Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 1990;186:343-55. doi: 10.1016/0076-6879(90)86128-I10.1016/0076-6879(90)86128-ISearch in Google Scholar

15. Miličević A, Novak Jovanović I, Miletić GI. Changes in electronic structures of flavonoids upon electrochemical oxidation and a theoretical model for the estimation of the first oxidation potential. Electrochim Acta 2018;284:742-50. doi: 10.1016/j.electacta.2018.07.20210.1016/j.electacta.2018.07.202Search in Google Scholar

16. Novak Jovanović I, Miličević A. A Model for the estimation of oxidation potentials of polyphenols. J Mol Liq 2017;241:255-9. doi: 10.1016/j.molliq.2017.06.01710.1016/j.molliq.2017.06.017Search in Google Scholar

17. Novak Jovanović I, Miličević A. A new, simplified model for the estimation of polyphenol oxidation potentials based on the number of OH groups. Arh Hig Rada Toksikol 2017;68:93-8. doi: 10.1515/aiht-2017-68-298810.1515/aiht-2017-68-298828665801Search in Google Scholar

18. Kongpichitchoke T, Hsu J-L, Huang T-C. Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies. J Agric Food Chem 2015;63:4580-6. doi: 10.1021/acs.jafc.5b0031210.1021/acs.jafc.5b0031225907027Search in Google Scholar

19. van Acker SABE, de Groot MJ, van den Berg D-J, Tromp MNJL, den Kelder GD-O, van der Vijgh WJF, Bast A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem Res Toxicol 1996;9:1305-12. doi: 10.1021/tx960096410.1021/tx96009648951233Search in Google Scholar

20. Arteaga JF, Ruiz-Montoya M, Palma A, Alonso-Garrido G, Pintado S, Rodríguez-Mellado JM. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules 2012;17:5126-38. doi: 10.3390/molecules1705512610.3390/molecules17055126626803522555300Search in Google Scholar

21. Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem 2009;113:1226-33. doi: 10.1016/j.foodchem.2008.08.01310.1016/j.foodchem.2008.08.013Search in Google Scholar

22. Zhang D, Chu L, Liu Y, Wang A, Ji B, Wu W, Zhou F, Wei Y, Cheng Q, Cai S, Xie L, Jia G. Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. J Agric Food Chem 2011;59:10277-85. doi: 10.1021/jf201773q10.1021/jf201773q21827150Search in Google Scholar

23. Stewart JJP. MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA (2016) [displayed 16 January 2019]. Available at HTTP://OpenMOPAC.netSearch in Google Scholar

24. Lučić B, Trinajstić N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci 1999;39:121-32. doi: 10.1021/ci980090f10.1021/ci980090fSearch in Google Scholar

25. Foti MC. Use and abuse of the DPPH radical. J Agric Food Chem 2015;63:8765-76. doi: 10.1021/acs.jafc.5b0383910.1021/acs.jafc.5b0383926390267Search in Google Scholar

26. Amić A, Marković Z, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D. Towards an improved prediction of the free radical scavenging potency of flavonoids: the significance of double PCET mechanisms. Food Chem 2014;152:578-85. doi: 10.1016/j.foodchem.2013.12.02510.1016/j.foodchem.2013.12.02524444978Search in Google Scholar

27. de Souza GLC, de Oliveira LMF, Vicari RG, Brown A. A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(1→3) linkage flavonols. J Mol Model 2016;22:100-8. doi: 10.1007/s00894-016-2961-910.1007/s00894-016-2961-927037824Search in Google Scholar

eISSN:
0004-1254
Idiomas:
Inglés, Slovenian
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Basic Medical Science, other