1. bookVolumen 25 (2022): Edición 2 (November 2022)
Detalles de la revista
Primera edición
06 Sep 2013
Calendario de la edición
2 veces al año
Acceso abierto

A short review on polycyclic aromatic hydrocarbon contamination

Publicado en línea: 01 Nov 2022
Volumen & Edición: Volumen 25 (2022) - Edición 2 (November 2022)
Páginas: 174 - 180
Recibido: 27 May 2022
Aceptado: 19 Sep 2022
Detalles de la revista
Primera edición
06 Sep 2013
Calendario de la edición
2 veces al año

Abdel-Shafy, H. I., & Mansour, M. S. (2013). Removal of selected pharmaceuticals from urine via Fenton reaction for agriculture reuse. J. Sustainable Sanitation Practice, 17, 20–29. http://www.ecosan.at/ssp/issue-17-miscellaneous/SSP-17_Okt2013_20-29.pdf Search in Google Scholar

Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian journal of petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.01110.1016/j.ejpe.2015.03.011 Search in Google Scholar

Shahsavari, E., Schwarz, A., Aburto-Medina, A., & Ball, A. S. (2019). Biological degradation of polycyclic aromatic compounds (PAHs) in soil: a current perspective. Current Pollution Reports, 5(3), 84–92. https://doi.org/10.1007/s40726-019-00113-810.1007/s40726-019-00113-8 Search in Google Scholar

Bach, P. B., Kelley, M. J., Tate, R. C., & McCrory, D. C. (2003). Screening for lung cancer: a review of the current literature. Chest, 123(1), 72S-82S. https://doi.org/10.1378/chest.123.1_suppl.72S10.1378/chest.123.1_suppl.72S12527566 Search in Google Scholar

Baek, S., Field, R., Goldstone, M., Kirk, P., Lester, J., & Perry, R. (1991). A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water, air, and soil pollution, 60(3), 279–300. https://doi.org/10.1007/bf0028262810.1007/BF00282628 Search in Google Scholar

Baklanov, A., Hänninen, O., Slørdal, L., Kukkonen, J., Bjergene, N., Fay, B.,... & Karppinen, A. (2007). Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmospheric Chemistry and Physics, 7(3), 855–874. https://doi.org/10.5194/acp-7-855-200710.5194/acp-7-855-2007 Search in Google Scholar

Behera, B. K., Das, A., Sarkar, D. J., Weerathunge, P., Parida, P. K., Das, B. K.,... & Bansal, V. (2018). Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environmental pollution, 241, 212–233. https://doi.org/10.1016/j.envpol.2018.05.01610.1016/j.envpol.2018.05.01629807281 Search in Google Scholar

Cai, T., Ding, Y., Zhang, Z., Wang, X., Wang, T., Ren, Y., & Dong, Y. (2019). Effects of total organic carbon content and leaching water volume on migration behavior of polycyclic aromatic hydrocarbons in soils by column leaching tests. Environmental pollution, 254, 112981. https://doi.org/10.1016/j.envpol.2019.11298110.1016/j.envpol.2019.11298131394343 Search in Google Scholar

Chunhui, W., Shaohua, W., Shenglu, Z., Yaxing, S., & Jing, S. (2017). Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: a review. Pedosphere, 27(1), 17–26. https://doi.org/10.1016/S1002-0160(17)60293-510.1016/S1002-0160(17)60293-5 Search in Google Scholar

Cotruvo, J. A., & Regelski, M. (2017). National primary drinking water regulations for volatile organic chemicals. Safe Drinking Water Act, (1989), 29. https://doi.org/10.1201/978020371043210.1201/9780203710432 Search in Google Scholar

Dahlstrom, D., & Bloomhuff, A. (2014). ACGIH®(American conference of governmental industrial hygienists). https://doi.org/10.1080/08828032.1987.1038978710.1080/08828032.1987.10389787 Search in Google Scholar

Du, J., & Jing, C. (2018). Anthropogenic PAHs in lake sediments: a literature review (2002–2018). Environmental Science: Processes & Impacts, 20(12), 1649–1666. https://doi.org/10.1039/C8EM00195B10.1039/C8EM00195B Search in Google Scholar

Edwards, N. T. (1983). Polycyclic aromatic hydrocarbons (PAH‘s) in the terrestrial environment – a review. Journal of Environmental Quality, 12(4), 427–441. https://doi.org/10.2134/jeq1983.00472425001200040001x10.2134/jeq1983.00472425001200040001x Search in Google Scholar

Gan, S., Lau, E., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of hazardous materials, 172(2–3), 532–549. https://doi.org/10.1016/j.jhazmat.2009.07.11810.1016/j.jhazmat.2009.07.11819700241 Search in Google Scholar

Grossman, M., Prince, R., Garrett, R., Garrett, K., Bare, R., O’Neil, K.,... & Sergy, G. (2000). Microbial diversity in oiled and un-oiled shoreline sediments in the Norwegian Arctic. Microbial biosystems: new frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbiology, Kentville, Nova Scotia, Canada, Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:31053369 Search in Google Scholar

Huang, S., Dai, C., Zhou, Y., Peng, H., Yi, K., Qin, P.,... & Zhang, X. (2018). Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere: a review. Environmental Science and Pollution Research, 25(17), 16548–16566. https://doi.org/10.1007/s11356-018-2167-z10.1007/s11356-018-2167-z29740766 Search in Google Scholar

Hussain, I., Aleti, G., Naidu, R., Puschenreiter, M., Mahmood, Q., Rahman, M. M.,... & Reichenauer, T. G. (2018). Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Science of The Total Environment, 628,1582–1599. https://doi.org/10.1016/j.scitotenv.2018.02.03710.1016/j.scitotenv.2018.02.03730045575 Search in Google Scholar

Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a] pyrene. International Biodeterioration & Biodegradation, 45(1–2), 57–88. https://doi.org/10.1016/S0964-8305(00)00052-410.1016/S0964-8305(00)00052-4 Search in Google Scholar

Koshlaf, E., Shahsavari, E., Haleyur, N., Osborn, A. M., & Ball, A. S. (2019). Effect of biostimulation on the distribution and composition of the microbial community of a polycyclic aromatic hydrocarbon-contaminated landfill soil during bioremediation. Geoderma, 338, 216–225. https://doi.org/10.1016/j.geoderma.2018.12.00110.1016/j.geoderma.2018.12.001 Search in Google Scholar

Kuppusamy, S., Thavamani, P., Megharaj, M., & Naidu, R. (2016). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings – assessments in liquid-and slurry-phase systems. International Biodeterioration & Biodegradation, 108, 149–157. https://doi.org/10.1016/j.ibiod.2015.12.01310.1016/j.ibiod.2015.12.013 Search in Google Scholar

Liu, M., Zheng, H., Chen, M., Liang, J., Duan, M., Du, H.,... & Cai, M. (2022). Dissolved PAHs impacted by air-sea interactions: Net volatilization and strong surface current transport in the Eastern Indian Ocean. Journal of hazardous materials, 431,128603. https://doi.org/10.1016/j.jhazmat.2022.12860310.1016/j.jhazmat.2022.12860335255333 Search in Google Scholar

Masih, J., Singhvi, R., Kumar, K., Jain, V., & Taneja, A. (2012). Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of northern India. Aerosol and Air Quality Research, 12(4), 515–525. https://doi.org/10.4209/aaqr.2011.11.019210.4209/aaqr.2011.11.0192 Search in Google Scholar

Moursy, A. S., & Abdel-Shafy, H. I. (1983). Removal of hydrocarbons from Nile water. Environment international, 9(3), 165–171. https://doi.org/10.1016/0160-4120(83)90034-X10.1016/0160-4120(83)90034-X Search in Google Scholar

Muckian, L. M., Grant, R. J., Clipson, N. J., & Doyle, E. M. (2009). Bacterial community dynamics during bioremediation of phenanthrene-and fluoranthene-amended soil. International Biodeterioration & Biodegradation, 63(1), 52–56. https://doi.org/10.1016/j.ibiod.2008.04.00510.1016/j.ibiod.2008.04.005 Search in Google Scholar

Olsson, A. C., Fevotte, J., Fletcher, T., Cassidy, A., Mannetje, A. t., Zaridze, D.,... & Fabianova, E. (2010). Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: a multicenter study in Europe. Occupational and environmental medicine, 67(2), 98–103. http://dx.doi.org/10.1136/oem.2009.04668010.1136/oem.2009.04668019773276 Search in Google Scholar

Qiu, Y.-Y., Gong, Y.-X., & Ni, H.-G. (2019). Contribution of soil erosion to PAHs in surface water in China. Science of The Total Environment, 686, 497–504. https://doi.org/10.1016/j.scitotenv.2019.05.45910.1016/j.scitotenv.2019.05.45931185398 Search in Google Scholar

Regonne, R. K., Martin, F., Mbawala, A., Ngassoum, M. B., & Jouanneau, Y. (2013). Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ. Environmental pollution, 180,145–151. https://doi.org/10.1016/j.envpol.2013.04.03810.1016/j.envpol.2013.04.03823770314 Search in Google Scholar

Reyes, J. J., Director, A. D., & E57, C. B. (2017). Agency for Toxic Substances and Disease Registry. https://doi.org/10.2172/540045810.2172/5400458 Search in Google Scholar

Salanitro, J. P., Dorn, P. B., Huesemann, M. H., Moore, K. O., Rhodes, I. A., Rice Jackson, L. M.,... & Wisniewski, H. L. (1997). Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environmental Science & Technology, 31(6), 1769–1776. https://doi.org/10.1021/es960793i10.1021/es960793i Search in Google Scholar

Scullion, J. (2006). Remediating polluted soils. Naturwissenschaften, 93(2), 51–65. https://doi.org/10.1007/s00114-005-0079-510.1007/s00114-005-0079-516468025 Search in Google Scholar

Seo, J.-S., Keum, Y.-S., Harada, R. M., & Li, Q. X. (2007). Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. Journal of agricultural and food chemistry, 55(14), 5383–5389. https://doi.org/10.1021/jf063763010.1021/jf063763017552538 Search in Google Scholar

Sereshk, Z. H., & Bakhtiari, A. R. (2014). Distribution patterns of PAHs in different tissues of annulated sea snake (Hydrophis cyanocinctus) and short sea snake (Lapemis curtus) from the Hara Protected Area on the North Coast of the Persian Gulf, Iran. Ecotoxicology and Environmental Safety, 109, 116–123. https://doi.org/10.1016/j.ecoenv.2014.06.00410.1016/j.ecoenv.2014.06.00425173747 Search in Google Scholar

Sharma, T. (2014). In silico investigation of polycyclic aromatic hydrocarbons against bacterial 1–2 dioxygenase. J. Chem. Pharm. Res, 6, 873–877. Search in Google Scholar

Silva, Í. S., dos Santos, E. d. C., de Menezes, C. R., de Faria, A. F., Franciscon, E., Grossman, M., & Durrant, L. R. (2009). Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresource Technology, 100(20), 4669–4675. https://doi.org/10.1016/j.biortech.2009.03.07910.1016/j.biortech.2009.03.07919477638 Search in Google Scholar

Stout, S. A., Emsbo-Mattingly, S. D., Douglas, G. S., Uhler, A. D., & McCarthy, K. J. (2015). Beyond 16 priority pollutant PAHs: a review of PACs used in environmental forensic chemistry. Polycyclic Aromatic Compounds, 35(2–4), 285–315. https://doi.org/10.1080/10406638.2014.89114410.1080/10406638.2014.891144 Search in Google Scholar

Suess, M. J. (1976). The environmental load and cycle of polycyclic aromatic hydrocarbons. Science of The Total Environment, 6(3), 239–250. https://doi.org/10.1016/0048-9697(76)90033-410.1016/0048-9697(76)90033-4 Search in Google Scholar

Toledo, F., Calvo, C., Rodelas, B., & González-López, J. (2006). Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Systematic and Applied Microbiology, 29(3), 244–252. https://doi.org/10.1016/j.syapm.2005.09.00310.1016/j.syapm.2005.09.00316564960 Search in Google Scholar

Tolosa, I., Bayona, J. M., & Albaigés, J. (1996). Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in northwestern Mediterranean sediments: spatial and temporal variability, fluxes, and budgets. Environmental Science & Technology, 30(8), 2495–2503. https://doi.org/10.1021/es950647x10.1021/es950647x Search in Google Scholar

Unwin, J., Cocker, J., Scobbie, E., & Chambers, H. (2006). An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Annals of Occupational Hygiene, 50(4), 395–403. https://doi.org/10.1093/annhyg/mel01010.1093/annhyg/mel01016551675 Search in Google Scholar

Wang, L., Zhao, Y., Yi, X., Wang, Z., Yi, Y., Huang, T.,... & Ma, J. (2017). Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, northwest China. Environmental Science and Pollution Research, 24(14), 12820–12834. https://doi.org10.1007/s11356-017-8808-910.1007/s11356-017-8808-928364205 Search in Google Scholar

Wick, A. F., Haus, N. W., Sukkariyah, B. F., Haering, K. C., & Daniels, W. L. (2011). Remediation of PAH-contaminated soils and sediments: a literature review. CSES Department, internal research document, 102. http://landrehab.org/ Search in Google Scholar

Wild, S. R., & Jones, K. C. (1995). Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environmental pollution, 88(1), 91–108. https://doi.org/10.1016/0269-7491(95)91052-M10.1016/0269-7491(95)91052-M15091573 Search in Google Scholar

Xia, Z., Duan, X., Qiu, W., Liu, D., Wang, B., Tao, S.,... & Hu, X. (2010). Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Science of The Total Environment, 408(22), 5331–5337. https://doi.org/10.1016/j.scitotenv.2010.08.00810.1016/j.scitotenv.2010.08.00820800879 Search in Google Scholar

Xing, X., Zhang, Y., Yang, D., Zhang, J., Chen, W., Wu, C.,... & Qi, S. (2016). Spatio-temporal variations and influencing factors of polycyclic aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain transect in western China. Atmospheric Environment, 139, 131–138. https://doi.org/10.1016/j.atmosenv.2016.05.02710.1016/j.atmosenv.2016.05.027 Search in Google Scholar

Yin, H., Tan, Q., Chen, Y., Lv, G., He, D., & Hou, X. (2011). Polycyclic aromatic hydrocarbons (PAHs) pollution recorded in annual rings of gingko (Gingko biloba L.): Translocation, radial diffusion, degradation and modeling. Microchemical Journal, 97(2), 131–137. https://doi.org/10.1016/j.microc.2010.08.00410.1016/j.microc.2010.08.004 Search in Google Scholar

Zhang, Y., Cui, B., Zhang, Q., & Liu, X. (2015). Polycyclic aromatic hydrocarbons in the food web of coastal wetlands: distribution, sources and potential toxicity. Clean-Soil, Air, Water, 43(6), 881–891. https://doi.org/10.1002/clen.20140030510.1002/clen.201400305 Search in Google Scholar

Zhang, Y., Peng, C., Guo, Z., Xiao, X., & Xiao, R. (2019). Polycyclic aromatic hydrocarbons in urban soils of China: distribution, influencing factors, health risk and regression prediction. Environmental pollution, 254, 112930. https://doi.org/10.1016/j.envpol.2019.07.09810.1016/j.envpol.2019.07.09831374490 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo