1. bookVolumen 25 (2022): Edición 2 (November 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1338-5259
Primera edición
06 Sep 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Opportunities for carbon sequestration in intensive soft fruit production systems

Publicado en línea: 01 Nov 2022
Volumen & Edición: Volumen 25 (2022) - Edición 2 (November 2022)
Páginas: 107 - 114
Recibido: 01 Jun 2022
Aceptado: 08 Oct 2022
Detalles de la revista
License
Formato
Revista
eISSN
1338-5259
Primera edición
06 Sep 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés

Agostini, F., Gregory, A. S., & Richter, G. M. (2015). Carbon sequestration by perennial energy crops: is the jury still out? Bioenergy research, 8(3), 1057–1080. https://doi.org/10.1007/s12155-014-9571-010.1007/s12155-014-9571-0473260326855689 Search in Google Scholar

Błonska, E., Lasota, J., da Silva, G. R. V., Vanguelova, E., Ashwood, F., Tibbett, M., Watts, K., & Lukac, M. (2020). Soil organic matter stabilization and carbon-cycling enzyme activity are affected by land management. Annals of Forest Research, 63(1), 71–86. https://doi.org/10.15287/afr.2019.1837 Search in Google Scholar

Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., & Reichstein, M. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13(3), 679–706. https://doi.org/10.1111/j.1365-2486.2006.01305.x10.1111/j.1365-2486.2006.01305.x Search in Google Scholar

Briedis, C., de Moraes Sá, J. C., Caires, E. F., de Fátima Navarro, J., Inagaki, T. M., Boer, A., Neto, C. Q., de Oliveira Ferreira, A., Canalli, L. B., & Dos Santos, J. B. (2012). Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma, 170, 80–88. https://doi.org/10.1016/j.geoderma.2011.10.01110.1016/j.geoderma.2011.10.011 Search in Google Scholar

Cheng, W. (1999). Rhizosphere feedbacks in elevated CO2. Tree physiology, 19(4–5), 313–320. https://doi.org/10.1093/treephys/19.4-5.31310.1093/treephys/19.4-5.31312651574 Search in Google Scholar

Drexler, S., Gensior, A., & Don, A. (2021). Carbon sequestration in hedgerow biomass and soil in the temperate climate zone. Regional Environmental Change, 21(3), 1–14. https://doi.org/10.1007/s10113-021-01798-810.1007/s10113-021-01798-8 Search in Google Scholar

Ellis, C. R., Feltham, H., Park, K., Hanley, N., & Goulson, D. (2017). Seasonal complementary in pollinators of soft-fruit crops. Basic and Applied Ecology, 19, 45–55. https://doi.org/10.1016/j.baae.2016.11.00710.1016/j.baae.2016.11.007 Search in Google Scholar

Golub, A., Hertel, T., Lee, H.-L., Rose, S., & Sohngen, B. (2009). The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resource and Energy Economics, 31(4), 299–319. https://doi.org/10.1016/j.reseneeco.2009.04.00710.1016/j.reseneeco.2009.04.007 Search in Google Scholar

Houghton, R., Davidson, E., & Woodwell, G. (1998). Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles, 12(1), 25–34. https://doi.org/10.1029/97GB0272910.1029/97GB02729 Search in Google Scholar

Johansson, T. (1999a). Biomass equations for determining fractions of European aspen growing on abandoned farmland and some practical implications. Biomass and Bioenergy, 17(6), 471–480. https://doi.org/10.1016/S0961-9534(99)00073-210.1016/S0961-9534(99)00073-2 Search in Google Scholar

Johansson, T. (1999b). Dry matter amounts and increment in 21-to 91-year-old common alder and grey alder and some practical implications. Canadian Journal of Forest Research, 29(11), 1679–1690. https://doi.org/10.1139/x99-12610.1139/x99-126 Search in Google Scholar

Johnson, J. M.-F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107–124. https://doi.org/10.1016/j.envpol.2007.06.03010.1016/j.envpol.2007.06.03017706849 Search in Google Scholar

Lukac, M., Lagomarsino, A., Moscatelli, M. C., De Angelis, P., Cotrufo, M. F., & Godbold, D. L. (2009). Forest soil carbon cycle under elevated CO2 – a case of increased throughput? Forestry, 82(1), 75–86. https://doi.org/10.1093/forestry/cpn04110.1093/forestry/cpn041 Search in Google Scholar

Norby, R. J., Hanson, P. J., O‘Neill, E. G., Tschaplinski, T. J., Weltzin, J. F., Hansen, R. A., Cheng, W., Wullschleger, S. D., Gunderson, C. A., & Edwards, N. T. (2002). Net primary productivity of a CO2 – enriched deciduous forest and the implications for carbon storage. Ecological Applications, 12(5), 1261–1266. https://doi.org/10.1890/1051-0761(2002)012[1261:NPPOAC]2.0.CO;2 Search in Google Scholar

Peters, R. D., Sturz, A. V., Carter, M. R., & Sanderson, J. B. (2003). Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research, 72(2), 181–192. https://doi.org/10.1016/S0167-1987(03)00087-410.1016/S0167-1987(03)00087-4 Search in Google Scholar

Tivet, F., Carlos de Moraes Sá, J., Borszowskei, P. R., Letourmy, P., Briedis, C., Ferreira, A. O., & Burkner dos Santos Thiago Massao Inagaki, J. (2012). Soil Carbon Inventory by Wet Oxidation and Dry Combustion Methods: Effects of Land Use, Soil Texture Gradients, and Sampling Depth on the Linear Model of C- Equivalent Correction Factor. Soil Science Society of America Journal, 76(3), 1048–1059. https://doi.org/10.2136/sssaj2011.032810.2136/sssaj2011.0328 Search in Google Scholar

Wattel-Koekkoek, E., Buurman, P., Van Der Plicht, J., Wattel, E., & Van Breemen, N. (2003). Mean residence time of soil organic matter associated with kaolinite and smectite. European journal of soil science, 54(2), 269–278. https://doi.org/10.1046/j.1365-2389.2003.00512.x10.1046/j.1365-2389.2003.00512.x Search in Google Scholar

Yang, Y., Tilman, D., Furey, G., & Lehman, C. (2019). Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-08636-w10.1038/s41467-019-08636-w637264230755614 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo