[
Aebi, H. (1984). Catalase in vitro. In Methods Enzymol.Academic press. Vol. 105, pp. 121-12.
]Search in Google Scholar
[
Alam, M.M., Nahar, K., Hasanuzzaman, M. & Fujita M. (2014). Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnology Reports, 8, 279-293. DOI: 10.1007/s11816-014-0321-8.
]Search in Google Scholar
[
Ali, Q., Javed, M., Haider, M., Habib, N., Rizwan, M., Perveen, R., Ali, S., Alyemeni, M., El-Serehy, H. & Al-Misned, F. (2020). α-Tocopherol foliar spray and translocation mediates growth, photosynthetic pigments, nutrient uptake, and oxidative defense in maize (Zea mays L.) under drought stress. Agronomy, 10(9), 1235. DOI: 10.3390/agronomy10091235.
]Search in Google Scholar
[
Antonenko, K., Duma, M., Kreicberg, V. & Kunkulberga D. (2016). The influence of microelements selenium and cooper on the rye malt amylase activity and flour technological properties. Agronomy Research, 14(2), 1261-1270.
]Search in Google Scholar
[
Ashraf, M. & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. DOI: 10.1007/s11099-013-0021-6.
]Search in Google Scholar
[
Barkosky, R. R. & Einhellig, F. A. (2003). Allelopathic interference of plant water relationships by parahydroxybenzoic acid. Botanical Bulletin of Academia Sinica, 44, 53-58.
]Search in Google Scholar
[
Bil’chuk, V. S., Rossikhina-Galycha, А. S. (2012). Ascorbate-glutathione protective system of maize plants under nickel ions action. Regulatory Mechanisms in Biosystems, 3(2), 9-14. DOI: 10.15421/021225.
]Search in Google Scholar
[
Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C.W., Lazzarotto, F. & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011-1019. DOI: 10.1590/s1415-47572012000600016.
]Search in Google Scholar
[
Chakrabarty, A., Aditya, M., Dey, N., Bani N. & Bhattacharjee, S. (2016). Antioxidant signaling and redox regulation in drought – and salinity-stressed plants. In M. Hossain, S. Wani, S. Bhattacharjee, D. Burritt & L. S. Tran (Eds.) Drought Stress Tolerance in Plants. Vol 1, pp. 465-498. Springer, Cham. DOI: 10.1007/978-3-319-28899-4_20.
]Search in Google Scholar
[
Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D. & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress response. Cellular and Molecular Life Sciences, 57, 779-795. DOI: 10.1007/s000180050041.
]Search in Google Scholar
[
de Pinto, M. C. & de Gara, L. (2004). Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany, 55(408), 2559-2569. DOI: 10.1093/jxb/erh253.
]Search in Google Scholar
[
Doliba, I. M., Volkov, R. A. & Panchuk, I. I. (2010). Method of catalase activity determination in plants. Physiology and Biochemistry Cultivated Plants, 42(6), 497-503. Valentyna Havii et al.
]Search in Google Scholar
[
Dziuba, V. & Kuchmenko, O. (2017). Modern aspects of ubiquinone functions in cell metabolism. Visnyk of the Lviv University. Series Biology, 75, 3-13.
]Search in Google Scholar
[
FAO (Food and Agriculture Organization). Retrieved September, 25, 2024, from https://www.fao.org/faostat/en.
]Search in Google Scholar
[
Farooq, M. A., Niazi, A. K., Akhtar, J., Farooq, M., Souri, Z., Karimi, N. & Rengel, Z. (2019). Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141, 353-369. DOI: 10.1016/j.plaphy.2019.04.039.
]Search in Google Scholar
[
Foyer, C. H. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875. DOI: 10.1105/tpc. 105.033589.
]Search in Google Scholar
[
Foyer, C. H. & Noctor, G. (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytologist, 146(3), 359–388. DOI: 10.1046/j.1469-8137.2000.00667.x.
]Search in Google Scholar
[
Foyer, C. H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling, 11(4), 861-906. DOI: 10.1089/ars.2008.2177.
]Search in Google Scholar
[
Foyer, C. H., Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155, 2-18. DOI: 10.1104/pp.110.167569.
]Search in Google Scholar
[
Foyer, C. H. & Shigeoka, S. (2011). Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. Plant Physiology, 155(1), 93–100. DOI: 10.1104/pp.110.166181.
]Search in Google Scholar
[
Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. DOI: 10.1016/j.plaphy. 2010.08.016.
]Search in Google Scholar
[
Guan, L. M. & Scandalios, J. G. (2000). Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radical Biology and Medicine, 28(8), 1182-1190. DOI: 10.1016/S0891-5849(00)00212-4.
]Search in Google Scholar
[
Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z. & Chen, K. (2015). Magnesium stress signaling in plant: just a beginning. Plant Signal Behavior, 3(10), e992287. DOI: 10.4161/15592324. 2014.992287.
]Search in Google Scholar
[
Hasanuzzaman, M., Bhuyan, M., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A. & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. DOI: 10.3390/antiox8090384.
]Search in Google Scholar
[
Hussain, S., Khan, F., Hussain, H. A. & Nie, L. (2016). Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Frontiers in Plant Science 7, 116. DOI: 10.3389/fpls.2016.00116.
]Search in Google Scholar
[
Ivanov, S., Konstantinova, T., Parvanova, D., Todorova, D., Djilianov, D. & Alexieva, V. (2001). Effect of high temperatures on the growth, free proline content and some antioxidants in tobacco plants. Comptes Rendus de l’Academie Bulgare des Sciences, 54(7), 71-74.
]Search in Google Scholar
[
Jardim-Messeder, D., Caverzan, A., Balbinott, N., Menguer, P. K., Paiva, A. L. S., Lemos, M., Cunha, J. R., Gaeta, M.L., Costa, M., Zamocky, M., Saibo, N. J. M., Silveira, J. A. G., Margis, R. & Margis-Pinheiro, M. (2023). Stromal ascorbate peroxidase (OsAPX7) modulates drought stress tolerance in rice (Oryza sativa). Antioxidants, 12, 387. DOI: 10.3390/antiox12020387.
]Search in Google Scholar
[
Kaur, E., Bhardwaj, R. D., Kaur, S., & Grewal, S. K. (2021). Drought stress-induced changes in redox metabolism of barley (Hordeum vulgare L.). Biologia Futura, 72, 347-358. DOI: 10.1007/s42977-021-00084-2.
]Search in Google Scholar
[
Kausar, R., Hossain, Z., Makino, T., & Komatsu, S. (2012). Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Molecular Biology Reports, 39, 10573-10579. DOI 10.1007/s11033-012-1945-9.
]Search in Google Scholar
[
Khomenko, S. O., Kochmarskyi, V. S., Fedorenko, I. V. & Fedorenko, M. V. (2017). Drought tolerance and yield components of bread spring wheat collection samples in environments of Forest-Steppe of Ukraine. Myronivka Bulletin, 4, 79–87. DOI: 10.31073/mvis201704-07.
]Search in Google Scholar
[
Kolesnikov, M., Gerasko, T., Paschenko, Yu., Pokoptseva, L., Onyschenko, O. & Kolesnikova, A. (2023). Effect of water deficit on maize seeds (Zea mays L.) during germination. Agronomy Research, 21(1), 156–174. DOI: 10.15159/AR.23.016.
]Search in Google Scholar
[
Kolupaev, Yu. E. & Karpets, Yu. (2019). Active forms of oxygen, antioxidants and plant resistance to stressors. Kyiv: Logos.
]Search in Google Scholar
[
Konturska, O. O. & Palladina, T. O. (2012). Аscorbate-glutathione cycle enzymes activity in Zea mays leaves under salinity and treatment by adaptogenic compounds. The Ukrainian Biochemical Journal, 84(6), 139-144.
]Search in Google Scholar
[
Kurylenko, A. & Kuchmenko, O. (2022). The influence of presowing treatment on the content of lipid oxidation products, vitamins and the activity of antioxidant enzymes in winter rye grain. Notes in Current Biology, 1(1), 18-22.
]Search in Google Scholar
[
Liu, M. & Lu, S. (2016). Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering. Frontiers in Plant Science, 7, 1898. DOI: 10.3389/fpls.2016.01898.
]Search in Google Scholar
[
Martinez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D., Valdivié, M., Hu, C.A., Ren, W. & Yin, Y. (2017). The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids, 12(49), 2091–2098. DOI: 10.1007/s00726-017-2494-2.
]Search in Google Scholar
[
Matthews, B.F. (1999). Lysine, Threonine, and Methionine Biosynthesis. In B. K. Singh (Ed.), Plant Amino Acids: Biochemistry and Biotechnology (Vol. 6(11), pp. 205-225). New York: Marcel Dekker Inc.
]Search in Google Scholar
[
Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V. & van Breusegem, F. (2011). ROS signaling: The new wave? Trends in Plant Science, 16, 300–309. DOI: 10.1016/j.tplants.2011.03.007.
]Search in Google Scholar
[
Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. DOI: 10.1093/oxfordjournals.pcp.a076232.
]Search in Google Scholar
[
Nezhadahmadi, A., Prodhan, Z.H. & Faruq, G. (2013). Intolerantness to drought in wheat. The Scientific World Journal, ID 610721. DOI: 10.1155/2013/610721.
]Search in Google Scholar
[
Noctor, G., Reichheld, J. P. & Foyer, C. H. (2017). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 8, 3–12. DOI: 10.1016/j.semcdb.2017.07.013.
]Search in Google Scholar
[
Petrov, V. D. & Breusegem, F. V. (2012). Hydrogen peroxide – a central hub for information flow in plant cell. AoB Plants, 2012:2012:pls014. Doi: 10.1093/aobpla/pls014.
]Search in Google Scholar
[
Pinheiro, C. & Chaves, M. M. (2011). Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62, 869–882. DOI: 10.1093/jxb/erq340.
]Search in Google Scholar
[
Popovych, V. V. (2018). Dependence of catalase enzyme activity on starch content in ruderal vegetation of landfills. Bulletin of LDUBZH, 18, 139–145.
]Search in Google Scholar
[
Potters, G. (2004). Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiology, 134(4), 1479–1487. DOI: 10.1104/pp.103.033548.
]Search in Google Scholar
[
Romero-Puertas, M. C., Corpas, F. J., Sandalio, L. M., Leterrier, M., Rodrіguez-Serrano, M., Del Rіo, L. A. & Palma, J. M. (2006). Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytologist, 170, 432-452. DOI: 10.1111/j.1469-8137.2005.01643.x.
]Search in Google Scholar
[
Sagi, M. & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiology 141(2), 336-340. DOI: 10.1104/pp.106.078089.
]Search in Google Scholar
[
Sattler, S., Gilliland, L., Magallanes-Lundback, M., Pollard, M. & Della Penna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 16(6), 1419–1432. DOI: 10.1105/tpc.021360.
]Search in Google Scholar
[
Scandalios, J.G. (2002). The rise of ROS. Trends in Biochemical Sciences, 27, 483-486.
]Search in Google Scholar
[
Secenji, M., Hideg, E., Bebes, A. & Gyorgyey, J. (2010). Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Reports, 29(1), 37-50. DOI: 10.1007/s00299-009-0796-x.
]Search in Google Scholar
[
Shao, N., Krieger-Liszkay, A., Schroda, M. & Beck, C. F. (2007). A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assey of reactive oxygen species produced in vivo. The Plant Journal, 50(3), 475-487. DOI: 10.1111/j.1365-313X.2007.03065.x.
]Search in Google Scholar
[
Smirnoff, N. (2018). Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biology and Medicine, 122, 116-129. DOI: 10.1016/j.freeradbiomed.2018.03.033.
]Search in Google Scholar
[
Sofo, A., Scopa, A., Nuzzaci, M. & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(6), 13561-13578. DOI: 10.3390/ijms160613561.
]Search in Google Scholar
[
Ministry of Agrarian Policy and Food of Ukraine. (2022, September). State register of plant varieties suitable for distribution in Ukraine for 2022. Kyiv: Ministry of Agrarian Policy and Food of Ukraine. Retrieved September, 8, 2022, from https://sops.gov.ua/reestr-sortiv-roslin [In Ukrainian]
]Search in Google Scholar
[
Strohm, M. (1995). Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione-synthetase. The Plant Journal, 7(1), 414-145. DOI: 10.1046/j.1365-313X.1995.07010141.x.
]Search in Google Scholar
[
Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzе, D. & Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. The EMBO Journal, 16, 4806-4816. DOI: 10.1093/emboj/16.16.4806.
]Search in Google Scholar
[
Yu, C. W., Murphy, T. M. & Lin, C. H. (2003). Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Functional Plant Biology, 30, 955-963. DOI: 10.1071/FP03091.
]Search in Google Scholar
[
Zhang, Z., Zhang, Q., Wu, J., Zheng, X., Zheng, S., Sun, X., Qiu, Q. & Lu, T. (2013). Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One, 8(2), e57472. DOI: 10.1371/journal.pone.0057472.
]Search in Google Scholar
[
Zhuk, O. I. (2011). Formation of the adaptive response of plants to water deficit. Physiology and Bio-chemistry of Cultivated Plants, 43(1), 26–37.
]Search in Google Scholar