Acceso abierto

Biochemical Mechanisms of Drought Resistance in Soft Wheat Under Modeling of Water Deficiency and Effects of Seed Treatment with Metabolically Active Substances

, , , ,  y   
23 feb 2025

Cite
Descargar portada

Aebi, H. (1984). Catalase in vitro. In Methods Enzymol.Academic press. Vol. 105, pp. 121-12. Search in Google Scholar

Alam, M.M., Nahar, K., Hasanuzzaman, M. & Fujita M. (2014). Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnology Reports, 8, 279-293. DOI: 10.1007/s11816-014-0321-8. Search in Google Scholar

Ali, Q., Javed, M., Haider, M., Habib, N., Rizwan, M., Perveen, R., Ali, S., Alyemeni, M., El-Serehy, H. & Al-Misned, F. (2020). α-Tocopherol foliar spray and translocation mediates growth, photosynthetic pigments, nutrient uptake, and oxidative defense in maize (Zea mays L.) under drought stress. Agronomy, 10(9), 1235. DOI: 10.3390/agronomy10091235. Search in Google Scholar

Antonenko, K., Duma, M., Kreicberg, V. & Kunkulberga D. (2016). The influence of microelements selenium and cooper on the rye malt amylase activity and flour technological properties. Agronomy Research, 14(2), 1261-1270. Search in Google Scholar

Ashraf, M. & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. DOI: 10.1007/s11099-013-0021-6. Search in Google Scholar

Barkosky, R. R. & Einhellig, F. A. (2003). Allelopathic interference of plant water relationships by parahydroxybenzoic acid. Botanical Bulletin of Academia Sinica, 44, 53-58. Search in Google Scholar

Bil’chuk, V. S., Rossikhina-Galycha, А. S. (2012). Ascorbate-glutathione protective system of maize plants under nickel ions action. Regulatory Mechanisms in Biosystems, 3(2), 9-14. DOI: 10.15421/021225. Search in Google Scholar

Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C.W., Lazzarotto, F. & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011-1019. DOI: 10.1590/s1415-47572012000600016. Search in Google Scholar

Chakrabarty, A., Aditya, M., Dey, N., Bani N. & Bhattacharjee, S. (2016). Antioxidant signaling and redox regulation in drought – and salinity-stressed plants. In M. Hossain, S. Wani, S. Bhattacharjee, D. Burritt & L. S. Tran (Eds.) Drought Stress Tolerance in Plants. Vol 1, pp. 465-498. Springer, Cham. DOI: 10.1007/978-3-319-28899-4_20. Search in Google Scholar

Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D. & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress response. Cellular and Molecular Life Sciences, 57, 779-795. DOI: 10.1007/s000180050041. Search in Google Scholar

de Pinto, M. C. & de Gara, L. (2004). Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany, 55(408), 2559-2569. DOI: 10.1093/jxb/erh253. Search in Google Scholar

Doliba, I. M., Volkov, R. A. & Panchuk, I. I. (2010). Method of catalase activity determination in plants. Physiology and Biochemistry Cultivated Plants, 42(6), 497-503. Valentyna Havii et al. Search in Google Scholar

Dziuba, V. & Kuchmenko, O. (2017). Modern aspects of ubiquinone functions in cell metabolism. Visnyk of the Lviv University. Series Biology, 75, 3-13. Search in Google Scholar

FAO (Food and Agriculture Organization). Retrieved September, 25, 2024, from https://www.fao.org/faostat/en. Search in Google Scholar

Farooq, M. A., Niazi, A. K., Akhtar, J., Farooq, M., Souri, Z., Karimi, N. & Rengel, Z. (2019). Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry, 141, 353-369. DOI: 10.1016/j.plaphy.2019.04.039. Search in Google Scholar

Foyer, C. H. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875. DOI: 10.1105/tpc. 105.033589. Search in Google Scholar

Foyer, C. H. & Noctor, G. (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytologist, 146(3), 359–388. DOI: 10.1046/j.1469-8137.2000.00667.x. Search in Google Scholar

Foyer, C. H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling, 11(4), 861-906. DOI: 10.1089/ars.2008.2177. Search in Google Scholar

Foyer, C. H., Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155, 2-18. DOI: 10.1104/pp.110.167569. Search in Google Scholar

Foyer, C. H. & Shigeoka, S. (2011). Understanding Oxidative Stress and Antioxidant Functions to Enhance Photosynthesis. Plant Physiology, 155(1), 93–100. DOI: 10.1104/pp.110.166181. Search in Google Scholar

Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. DOI: 10.1016/j.plaphy. 2010.08.016. Search in Google Scholar

Guan, L. M. & Scandalios, J. G. (2000). Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radical Biology and Medicine, 28(8), 1182-1190. DOI: 10.1016/S0891-5849(00)00212-4. Search in Google Scholar

Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z. & Chen, K. (2015). Magnesium stress signaling in plant: just a beginning. Plant Signal Behavior, 3(10), e992287. DOI: 10.4161/15592324. 2014.992287. Search in Google Scholar

Hasanuzzaman, M., Bhuyan, M., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A. & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. DOI: 10.3390/antiox8090384. Search in Google Scholar

Hussain, S., Khan, F., Hussain, H. A. & Nie, L. (2016). Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Frontiers in Plant Science 7, 116. DOI: 10.3389/fpls.2016.00116. Search in Google Scholar

Ivanov, S., Konstantinova, T., Parvanova, D., Todorova, D., Djilianov, D. & Alexieva, V. (2001). Effect of high temperatures on the growth, free proline content and some antioxidants in tobacco plants. Comptes Rendus de l’Academie Bulgare des Sciences, 54(7), 71-74. Search in Google Scholar

Jardim-Messeder, D., Caverzan, A., Balbinott, N., Menguer, P. K., Paiva, A. L. S., Lemos, M., Cunha, J. R., Gaeta, M.L., Costa, M., Zamocky, M., Saibo, N. J. M., Silveira, J. A. G., Margis, R. & Margis-Pinheiro, M. (2023). Stromal ascorbate peroxidase (OsAPX7) modulates drought stress tolerance in rice (Oryza sativa). Antioxidants, 12, 387. DOI: 10.3390/antiox12020387. Search in Google Scholar

Kaur, E., Bhardwaj, R. D., Kaur, S., & Grewal, S. K. (2021). Drought stress-induced changes in redox metabolism of barley (Hordeum vulgare L.). Biologia Futura, 72, 347-358. DOI: 10.1007/s42977-021-00084-2. Search in Google Scholar

Kausar, R., Hossain, Z., Makino, T., & Komatsu, S. (2012). Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Molecular Biology Reports, 39, 10573-10579. DOI 10.1007/s11033-012-1945-9. Search in Google Scholar

Khomenko, S. O., Kochmarskyi, V. S., Fedorenko, I. V. & Fedorenko, M. V. (2017). Drought tolerance and yield components of bread spring wheat collection samples in environments of Forest-Steppe of Ukraine. Myronivka Bulletin, 4, 79–87. DOI: 10.31073/mvis201704-07. Search in Google Scholar

Kolesnikov, M., Gerasko, T., Paschenko, Yu., Pokoptseva, L., Onyschenko, O. & Kolesnikova, A. (2023). Effect of water deficit on maize seeds (Zea mays L.) during germination. Agronomy Research, 21(1), 156–174. DOI: 10.15159/AR.23.016. Search in Google Scholar

Kolupaev, Yu. E. & Karpets, Yu. (2019). Active forms of oxygen, antioxidants and plant resistance to stressors. Kyiv: Logos. Search in Google Scholar

Konturska, O. O. & Palladina, T. O. (2012). Аscorbate-glutathione cycle enzymes activity in Zea mays leaves under salinity and treatment by adaptogenic compounds. The Ukrainian Biochemical Journal, 84(6), 139-144. Search in Google Scholar

Kurylenko, A. & Kuchmenko, O. (2022). The influence of presowing treatment on the content of lipid oxidation products, vitamins and the activity of antioxidant enzymes in winter rye grain. Notes in Current Biology, 1(1), 18-22. Search in Google Scholar

Liu, M. & Lu, S. (2016). Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering. Frontiers in Plant Science, 7, 1898. DOI: 10.3389/fpls.2016.01898. Search in Google Scholar

Martinez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D., Valdivié, M., Hu, C.A., Ren, W. & Yin, Y. (2017). The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids, 12(49), 2091–2098. DOI: 10.1007/s00726-017-2494-2. Search in Google Scholar

Matthews, B.F. (1999). Lysine, Threonine, and Methionine Biosynthesis. In B. K. Singh (Ed.), Plant Amino Acids: Biochemistry and Biotechnology (Vol. 6(11), pp. 205-225). New York: Marcel Dekker Inc. Search in Google Scholar

Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V. & van Breusegem, F. (2011). ROS signaling: The new wave? Trends in Plant Science, 16, 300–309. DOI: 10.1016/j.tplants.2011.03.007. Search in Google Scholar

Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880. DOI: 10.1093/oxfordjournals.pcp.a076232. Search in Google Scholar

Nezhadahmadi, A., Prodhan, Z.H. & Faruq, G. (2013). Intolerantness to drought in wheat. The Scientific World Journal, ID 610721. DOI: 10.1155/2013/610721. Search in Google Scholar

Noctor, G., Reichheld, J. P. & Foyer, C. H. (2017). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 8, 3–12. DOI: 10.1016/j.semcdb.2017.07.013. Search in Google Scholar

Petrov, V. D. & Breusegem, F. V. (2012). Hydrogen peroxide – a central hub for information flow in plant cell. AoB Plants, 2012:2012:pls014. Doi: 10.1093/aobpla/pls014. Search in Google Scholar

Pinheiro, C. & Chaves, M. M. (2011). Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 62, 869–882. DOI: 10.1093/jxb/erq340. Search in Google Scholar

Popovych, V. V. (2018). Dependence of catalase enzyme activity on starch content in ruderal vegetation of landfills. Bulletin of LDUBZH, 18, 139–145. Search in Google Scholar

Potters, G. (2004). Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiology, 134(4), 1479–1487. DOI: 10.1104/pp.103.033548. Search in Google Scholar

Romero-Puertas, M. C., Corpas, F. J., Sandalio, L. M., Leterrier, M., Rodrіguez-Serrano, M., Del Rіo, L. A. & Palma, J. M. (2006). Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytologist, 170, 432-452. DOI: 10.1111/j.1469-8137.2005.01643.x. Search in Google Scholar

Sagi, M. & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiology 141(2), 336-340. DOI: 10.1104/pp.106.078089. Search in Google Scholar

Sattler, S., Gilliland, L., Magallanes-Lundback, M., Pollard, M. & Della Penna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 16(6), 1419–1432. DOI: 10.1105/tpc.021360. Search in Google Scholar

Scandalios, J.G. (2002). The rise of ROS. Trends in Biochemical Sciences, 27, 483-486. Search in Google Scholar

Secenji, M., Hideg, E., Bebes, A. & Gyorgyey, J. (2010). Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Reports, 29(1), 37-50. DOI: 10.1007/s00299-009-0796-x. Search in Google Scholar

Shao, N., Krieger-Liszkay, A., Schroda, M. & Beck, C. F. (2007). A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assey of reactive oxygen species produced in vivo. The Plant Journal, 50(3), 475-487. DOI: 10.1111/j.1365-313X.2007.03065.x. Search in Google Scholar

Smirnoff, N. (2018). Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biology and Medicine, 122, 116-129. DOI: 10.1016/j.freeradbiomed.2018.03.033. Search in Google Scholar

Sofo, A., Scopa, A., Nuzzaci, M. & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(6), 13561-13578. DOI: 10.3390/ijms160613561. Search in Google Scholar

Ministry of Agrarian Policy and Food of Ukraine. (2022, September). State register of plant varieties suitable for distribution in Ukraine for 2022. Kyiv: Ministry of Agrarian Policy and Food of Ukraine. Retrieved September, 8, 2022, from https://sops.gov.ua/reestr-sortiv-roslin [In Ukrainian] Search in Google Scholar

Strohm, M. (1995). Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione-synthetase. The Plant Journal, 7(1), 414-145. DOI: 10.1046/j.1365-313X.1995.07010141.x. Search in Google Scholar

Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzе, D. & Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. The EMBO Journal, 16, 4806-4816. DOI: 10.1093/emboj/16.16.4806. Search in Google Scholar

Yu, C. W., Murphy, T. M. & Lin, C. H. (2003). Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Functional Plant Biology, 30, 955-963. DOI: 10.1071/FP03091. Search in Google Scholar

Zhang, Z., Zhang, Q., Wu, J., Zheng, X., Zheng, S., Sun, X., Qiu, Q. & Lu, T. (2013). Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One, 8(2), e57472. DOI: 10.1371/journal.pone.0057472. Search in Google Scholar

Zhuk, O. I. (2011). Formation of the adaptive response of plants to water deficit. Physiology and Bio-chemistry of Cultivated Plants, 43(1), 26–37. Search in Google Scholar